Skip to main content
Log in

Impact of nuclear shape fluctuations in high-energy heavy ion collisions

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The shape of atomic nuclei is often interpreted to possess a quadrupole deformation that fluctuates around some average profile. We investigate the impact of nuclear shape fluctuations on the initial state geometry in heavy ion collisions, particularly its eccentricity \(\varepsilon _2\) and inverse size \(d_{\perp }\), which can be related to the elliptic and radial flow in the final state. The fluctuation in overall quadrupole deformation enhances the variances and modifies the skewness and kurtosis of the \(\varepsilon _2\) and \(d_{\perp }\) in a controllable manner. The fluctuation in triaxiality reduces the difference between prolate and oblate shape for any observable, whose values, in the large fluctuation limit, approach those obtained in collisions of rigid triaxial nuclei. The method to disentangle the mean and variance of the quadrupole deformation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The manuscript has associated data in a data repository [Authors’ comment: Data are available upon request.]

Notes

  1. Random fluctuations of nucleon position in Glauber model naturally induce a small quadrupole deformation [24], which is subtracted and does not impact our discussion.

References

  1. W. Busza, K. Rajagopal, W. van der Schee, Ann. Rev. Nucl. Part. Sci. 68, 339 (2018). https://doi.org/10.1146/annurev-nucl-101917-020852. arXiv:1802.04801 [hep-ph]

    Article  ADS  Google Scholar 

  2. J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu, U. Heinz, Phys. Rev. C 94, 024907 (2016). https://doi.org/10.1103/PhysRevC.94.024907. arXiv:1605.03954 [nucl-th]

    Article  ADS  Google Scholar 

  3. G. Giacalone (2022). arXiv:2208.06839 [nucl-th]

  4. P. Ring, P. Schuck, The Nuclear Many-Body Problem

  5. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Atom. Data Nucl. Data Tabl. 109–110, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002. arXiv:1508.06294 [nucl-th]

    Article  ADS  Google Scholar 

  6. G. Scamps, S. Goriely, E. Olsen, M. Bender, W. Ryssens, Eur. Phys. J. A 57, 333 (2021). https://doi.org/10.1140/epja/s10050-021-00642-1. arXiv:2011.07904 [nucl-th]

    Article  ADS  Google Scholar 

  7. J. Jia, C.-J. Zhang, Phys. Rev. C 107, L021901 (2023). https://doi.org/10.1103/PhysRevC.107.L021901. arXiv:2111.15559 [nucl-th]

    Article  ADS  Google Scholar 

  8. G. Nijs, W. van der Schee (2021). arXiv:2112.13771 [nucl-th]

  9. J. Jia, G. Giacalone, C. Zhang, (2022). arXiv:2206.10449 [nucl-th]

  10. M. Abdallah et al. (STAR), Phys. Rev. C 105, 014901 (2022). https://doi.org/10.1103/PhysRevC.105.014901. arXiv:2109.00131 [nucl-ex]

  11. H. Xu, C. Zhang (STAR Collabration), Constraints on neutron skin thickness and nuclear deformations using relativistic heavy-ion collisions from STAR (2022). https://indico.cern.ch/event/895086/contributions/4724887/. https://indico.cern.ch/event/895086/contributions/4749420/

  12. C. Zhang, S. Bhatta, J. Jia, Phys. Rev. C 106, L031901 (2022). https://doi.org/10.1103/PhysRevC.106.L031901. arXiv:2206.01943 [nucl-th]

    Article  ADS  Google Scholar 

  13. C. Zhang, J. Jia, Phys. Rev. Lett. 128, 022301 (2022). https://doi.org/10.1103/PhysRevLett.128.022301. arXiv:2109.01631 [nucl-th]

    Article  ADS  Google Scholar 

  14. Y. Cao, S.E. Agbemava, A.V. Afanasjev, W. Nazarewicz, E. Olsen, Phys. Rev. C 102, 024311 (2020). https://doi.org/10.1103/PhysRevC.102.024311. arXiv:2004.01319 [nucl-th]

    Article  ADS  Google Scholar 

  15. B. Bally et al., (2022). arXiv:2209.11042 [nucl-ex]

  16. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003). https://doi.org/10.1103/RevModPhys.75.121

    Article  ADS  Google Scholar 

  17. M. Bender, P.-H. Heenen, Phys. Rev. C 78, 024309 (2008). https://doi.org/10.1103/PhysRevC.78.024309. arXiv:0805.4383 [nucl-th]

    Article  ADS  Google Scholar 

  18. T.R. Rodriguez, J.L. Egido, Phys. Rev. C 81, 064323 (2010). https://doi.org/10.1103/PhysRevC.81.064323. arXiv:1004.2877 [nucl-th]

    Article  ADS  Google Scholar 

  19. K. Heyde, J.L. Wood, Rev. Mod. Phys. 83, 1467 (2011). https://doi.org/10.1103/RevModPhys.83.1467

    Article  ADS  Google Scholar 

  20. K. Kumar, Phys. Rev. Lett. 28, 249 (1972). https://doi.org/10.1103/PhysRevLett.28.249

    Article  ADS  Google Scholar 

  21. A. Poves, F. Nowacki, Y. Alhassid, Phys. Rev. C 101, 054307 (2020). https://doi.org/10.1103/PhysRevC.101.054307. arXiv:1906.07542 [nucl-th]

    Article  ADS  Google Scholar 

  22. J. Jia, Phys. Rev. C 105, 014905 (2022). https://doi.org/10.1103/PhysRevC.105.014905. arXiv:2106.08768 [nucl-th]

    Article  ADS  Google Scholar 

  23. D. Teaney, L. Yan, Phys. Rev. C 83, 064904 (2011). https://doi.org/10.1103/PhysRevC.83.064904. arXiv:1010.1876 [nucl-th]

    Article  ADS  Google Scholar 

  24. B.G. Zakharov, JETP Lett. 112, 393 (2020). https://doi.org/10.1134/S0021364020190029. arXiv:2008.07304 [nucl-th]

    Article  ADS  Google Scholar 

  25. B.G. Zakharov, J. Exp. Theor. Phys. 134, 669 (2022). https://doi.org/10.1134/S1063776122050077. arXiv:2112.06066 [nucl-th]

    Article  ADS  Google Scholar 

  26. J. Jia, Phys. Rev. C 105, 044905 (2022). https://doi.org/10.1103/PhysRevC.105.044905. arXiv:2109.00604 [nucl-th]

    Article  ADS  Google Scholar 

  27. C. Loizides, Phys. Rev. C 94, 024914 (2016). https://doi.org/10.1103/PhysRevC.94.024914. arXiv:1603.07375 [nucl-ex]

    Article  ADS  Google Scholar 

  28. M. Zhou, J. Jia, Phys. Rev. C 98, 044903 (2018). https://doi.org/10.1103/PhysRevC.98.044903. arXiv:1803.01812 [nucl-th]

    Article  ADS  Google Scholar 

  29. P. Bozek, Phys. Rev. C 93, 044908 (2016). https://doi.org/10.1103/PhysRevC.93.044908. arXiv:1601.04513 [nucl-th]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by DOE DE-FG02-87ER40331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangyong Jia.

Additional information

Communicated by Vittorio Somà.

Appendix

Appendix

The default results in this paper are obtained with the nucleon Glauber model. We have repeated the analysis for the quark Glauber model and compared it with the nucleon Glauber model results in Figs. 9 and 10 for the impact of \(\gamma \) fluctuation and \(\beta \) fluctuation, respectively. The trends are mostly very similar. A few exceptions are observed. In particular, the results of the two models are shifted vertically from each other in Fig. 9. In the case of \(\beta \) fluctuation in Fig. 10, the variance \(c_{\textrm{d}}\{2\}\) and skewness \(c_{\textrm{d}}\{3\}\) are systematically different between the two models in the high \({\bar{\beta }}\) region. Table 2 gives the cumulant expression for the case where the projectile and target nuclei have the same mass number but different deformations. These expressions are expected from the additive nature of the cumulants.

Fig. 11
figure 11

The values of \(\left\langle \varepsilon _2^4\right\rangle -K\left\langle \varepsilon _2^2\right\rangle ^2\) for the value of K that minimize the dependence on \(\sigma _{\beta }\) in the quark Glauber model, similar to Fig. 6

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimri, A., Bhatta, S. & Jia, J. Impact of nuclear shape fluctuations in high-energy heavy ion collisions. Eur. Phys. J. A 59, 45 (2023). https://doi.org/10.1140/epja/s10050-023-00965-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-023-00965-1

Navigation