Skip to main content
Log in

Models of \(J/\varPsi \) photo-production reactions on the nucleon

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The \(J/\varPsi \) photo-production reactions on the nucleon can provide information on the roles of gluons in determining the \(J/\varPsi \)-nucleon (\(J/\varPsi \)-N) interactions and the structure of the nucleon. The information on the \(J/\varPsi \)-N interactions is needed to test lattice QCD (LQCD) calculations and to understand the nucleon resonances such as \(N^*(P_c)\) recently reported by the LHCb Collaboration. In addition, it is also needed to investigate the production of nuclei with hidden charms and to extract the gluon distributions in nuclei. The main purpose of this article is to review six models of the \(\gamma + p \rightarrow J/\varPsi +p\) reaction which have been and can be applied to analyze the data from Thomas Jefferson National Accelerator Facility (JLab). The formulae for each model are given and used to obtain the results to show the extent to which the available data can be described. The models presented include the Pomeron-exchange model of Donnachie and Landshoff (Pom-DL) and its extensions to include \(J/\varPsi \)-N potentials extracted from LQCD (Pom-pot) and to also use the constituent quark model (CQM) to account for the quark substructure of \(J/\varPsi \) (Pom-CQM). The other three models are developed from applying the perturbative QCD approach to calculate the two-gluon exchange using the generalized parton distribution (GPD) of the nucleon (GPD-based), two- and three-gluon exchanges using the parton distribution of the nucleon (\(2g+3g\)), and the exchanges of scalar (\(0^{++}\)) and tensor (\(2^{++}\)) glueballs within the holographic formulation (holog). The results of investigating the excitation of the nucleon resonances \(N^*(P_c)\) in the \(\gamma + p \rightarrow J/\varPsi +p\) reactions are also given. We demonstrate that the differences between these six models can be unambiguously distinguished and the \(N^*\) can be better studied by using the forthcoming JLab data at large |t| and at energies very near the \(J/\varPsi \) production threshold. Possible improvements of the considered models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: No unpublished experimental data are associated with this paper.]

References

  1. R. Aaij et al., LHCb Collaboration, Observation of \(J/\psi p\) resonances consistent with pentaquark states in \(\Lambda _b^0 \rightarrow J/\psi K^- p\) decays. Phys. Rev. Lett. 115, 072001 (2015)

  2. R. Aaij et al., LHCb Collaboration, Evidence for exotic hadron contributions to \(\Lambda _b^0 \rightarrow J/\psi p \pi ^-\) decays. Phys. Rev. Lett. 117, 082003 (2016)

  3. R. Aaij et al., Observation of a narrow pentaquark state, \(P_c(4312)^+\), and of the two-peak structure of the \(P_c(4450)^+\). Phys. Rev. Lett. 122, 222001 (2019)

    Article  ADS  Google Scholar 

  4. R. Aaij et al., LHCb Collaboration, Evidence for a new structure in the \(J/\psi p\) and \(J/\psi \bar{p}\) systems in \(B_s^0 \rightarrow J/\psi p\bar{p}\) decays. Phys. Rev. Lett. 128, 062001 (2022)

  5. S.J. Brodsky, G.F. de Teramond, Spin correlations, QCD color transparency, and heavy-quark thresholds in proton-proton scattering. Phys. Rev. Lett. 60, 1924 (1988)

    Article  ADS  Google Scholar 

  6. S.J. Brodsky, I. Schmidt, G.F. de Teramond, Nuclear-bound quarkonium. Phys. Rev. Lett. 64, 1011 (1990)

    Article  ADS  Google Scholar 

  7. H. Gao, T.-S.H. Lee, V. Marinov, \(\phi \)-\(N\) bound state. Phys. Rev. C 63, 022201(R) (2001)

    Article  ADS  Google Scholar 

  8. V.B. Belyaev, N.V. Shevchenko, A. Fix, W. Sandhas, Binding of charmonium with two- and three-body nuclei. Nucl. Phys. A 780, 100 (2006)

    Article  ADS  Google Scholar 

  9. J.-J. Wu, T.-S.H. Lee, Photoproduction of bound states with hidden charm. Phys. Rev. C 86, 065203 (2012)

    Article  ADS  Google Scholar 

  10. A. Ali et al., GlueX Collaboration, First measurement of near-threshold \(J/\psi \) exclusive photoproduction off the proton. Phys. Rev. Lett. 123, 072001 (2019)

  11. Z.-E. Meziani et al., A search for the LHCb charmed ‘pentaquark’ using photo-production of \(J/\psi \) at threshold in Hall C at Jefferson Lab, Preprint at arXiv:1609.00676

  12. A. Asaturyan et al., A search for the LHCb charmed “pentaquark” using photoproduction of \(J/\Psi \) at threshold in Hall C at Jefferson Lab, Proposal to JLab-PAC44, PR12-16-007 (2016)

  13. J. Arrington et al., Near threshold electroproduction of \(J/\Psi \) at 11 GeV, Proposal to JLab-PAC39, PR12-12-006 (2012)

  14. P.D.B. Collins, An Introduction to Regge Theory and High Energy Physics (Cambridge Univ. Press, Cambridge, 1977)

    Book  Google Scholar 

  15. A.C. Irving, R.P. Worden, Regge phenomenology. Phys. Rep. 34, 117 (1977)

    Article  ADS  Google Scholar 

  16. S. Donnachie, G. Dosch, P. Landshoff, O. Nachtmann, Pomeron Physics and QCD (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  17. M. Derrick et al., ZEUS Collaboration, Measurement of the cross section for the reaction \(\gamma p \rightarrow J/\psi p\) with the ZEUS detector at HERA. Phys. Lett. B 350, 120 (1995)

  18. D.P. Barber et al., Charged \(\rho \) photoproduction in the energy range \(2.8\) GeV - \(4.8\) GeV. Z. Phys. C 2, 1 (1979)

    Article  ADS  Google Scholar 

  19. A. Donnachie, P.V. Landshoff, Elastic scattering and diffraction dissociation. Nucl. Phys. B 244, 322 (1984)

    Article  ADS  Google Scholar 

  20. A. Donnachie, P.V. Landshoff, Total cross sections. Phys. Lett. B 296, 227 (1992)

    Article  ADS  Google Scholar 

  21. A. Donnachie, P.V. Landshoff, Exclusive vector meson production at HERA. Phys. Lett. B 348, 213 (1995)

    Article  ADS  Google Scholar 

  22. A. Donnachie, P.V. Landshoff, Small \(x\): two pomerons! Phys. Lett. B 437, 408 (1998)

    Article  ADS  Google Scholar 

  23. J.J. Sakurai, Theory of strong interactions. Ann. Phys. (N.Y.) 11, 1 (1960)

    Article  ADS  Google Scholar 

  24. M. Gell-Mann, F. Zachariasen, Form factors and vector mesons. Phys. Rev. 124, 953 (1961)

    Article  ADS  Google Scholar 

  25. J.J. Sakurai, Vector-meson dominance and high-energy electron-proton inelastic scattering. Phys. Rev. Lett. 22, 981 (1969)

    Article  ADS  Google Scholar 

  26. J.J. Sakurai, D. Schildknecht, Generalized vector dominance and inelastic electron-proton scattering. Phys. Lett. 40B, 121 (1972)

    Article  ADS  Google Scholar 

  27. F.E. Low, Model of the bare Pomeron. Phys. Rev. D 12, 163 (1975)

    Article  ADS  Google Scholar 

  28. S. Nussinov, Colored-quark version of some hadronic puzzles. Phys. Rev. Lett. 34, 1286 (1975)

    Article  ADS  Google Scholar 

  29. A. Donnachie, P.V. Landshoff, Gluon condensate and Pomeron structure. Nucl. Phys. B 311, 509 (1989)

    Article  ADS  Google Scholar 

  30. P.V. Landshoff, J.C. Polkinghorne, The dual quark-parton model and high energy hadronic processes. Nucl. Phys. B 32, 541 (1971)

    Article  ADS  Google Scholar 

  31. G.A. Jaroszkiewicz, P.V. Landshoff, Model for diffraction excitation. Phys. Rev. D 10, 170 (1974)

    Article  ADS  Google Scholar 

  32. J.-J. Wu, T.-S.H. Lee, B.-S. Zou, Nucleon resonances with hidden charm in \(\gamma p\) reactions. Phys. Rev. C 100, 035206 (2019)

    Article  ADS  Google Scholar 

  33. T.-S.H. Lee, Pomeron-LQCD model of \(J/\psi \) photo-production on the nucleon, Preprint at arXiv:2004.13934

  34. S.-H. Kim, T.-S.H. Lee, S.-I. Nam, Y. Oh, Dynamical model of \(\phi \) meson photoproduction on the nucleon and \(^{4}\)He. Phys. Rev. C 104, 045202 (2021)

    Article  ADS  Google Scholar 

  35. S. Aid et al., H1 Collaboration, Elastic electroproduction of \(\varrho \) and \(J/\psi \) mesons at large \(Q^2\) at HERA, Nucl. Phys. B 468, 3 (1996)

  36. B. Gittelman, K.M. Hanson, D. Larson, E. Loh, A. Silverman, G. Theodosiou, Photoproduction of the \(\psi (3100)\) meson at 11 GeV. Phys. Rev. Lett. 35, 1616 (1975)

    Article  ADS  Google Scholar 

  37. U. Camerini, J.G. Learned, R. Prepost, C.M. Spencer, D.E. Wiser, W.W. Ash, R.L. Anderson, D.M. Ritson, D.J. Sherden, C.K. Sinclair, Photoproduction of the \(\psi \) particles. Phys. Rev. Lett. 35, 483 (1975)

    Article  ADS  Google Scholar 

  38. M.E. Peskin, Short-distance analysis for heavy-quark systems (I). Diagrammatics. Nucl. Phys. B 156, 365 (1979)

    Article  ADS  Google Scholar 

  39. G. Bhanot, M.E. Peskin, Short-distance analysis for heavy-quark systems (II). Applications. Nucl. Phys. B 156, 391 (1979)

    Article  ADS  Google Scholar 

  40. M. Luke, A.V. Manohar, M.J. Savage, A QCD calculation of the interaction of quarkonium with nuclei. Phys. Lett. B 288, 355 (1992)

    Article  ADS  Google Scholar 

  41. S.J. Brodsky, G.A. Miller, Is \(J/\psi \)-nucleon scattering dominated by the gluonic van der Waals interaction? Phys. Lett. B 412, 125 (1997)

    Article  ADS  Google Scholar 

  42. A.B. Kaidalov, P.E. Volkovitsky, Heavy-quark interactions with nucleons and nuclei. Phys. Rev. Lett. 69, 3155 (1992)

    Article  ADS  Google Scholar 

  43. N. Ishii, S. Aoki, T. Hatsuda, Nuclear force from lattice QCD. Phys. Rev. Lett. 99, 022001 (2007)

    Article  ADS  Google Scholar 

  44. S. Aoki, T. Hatsuda, N. Ishii, Theoretical foundation of the nuclear force in QCD and its applications to central and tensor forces in quenched lattice QCD simulations. Prog. Theor. Phys. 123, 89 (2010)

    Article  ADS  MATH  Google Scholar 

  45. T. Kawanai, S. Sasaki, Charmonium-nucleon potential from lattice QCD. Phys. Rev. D 82, 091501(R) (2010)

    Article  ADS  Google Scholar 

  46. T. Kawanai, S. Sasaki, Charmonium-nucleon interaction from lattice QCD with \(2+1\) flavors of dynamical quarks. AIP Conf. Proc. 1388, 640 (2011)

    Article  ADS  Google Scholar 

  47. Y.-Z. Xu, S.-Y. Chen, Z.-Q. Yao, D. Binosi, Z.-F. Cui, C.D. Roberts, Vector-meson production and vector meson dominance. Eur. Phys. J. C 81, 895 (2021)

    Article  ADS  Google Scholar 

  48. Y. Guo, X. Ji, Y. Liu, QCD analysis of near-threshold photon-proton production of heavy quarkonium. Phys. Rev. D 103, 096010 (2021)

    Article  ADS  Google Scholar 

  49. Y. Guo, private communications, (2022)

  50. P.E. Shanahan, W. Detmold, Gluon gravitational form factors of the nucleon and the pion from lattice QCD. Phys. Rev. D 99, 014511 (2019)

    Article  ADS  Google Scholar 

  51. S.J. Brodsky, E. Chudakov, P. Hoyer, J.M. Laget, Photoproduction of charm near threshold. Phys. Lett. B 498, 23 (2001)

    Article  ADS  Google Scholar 

  52. S.J. Brodsky, M. Burkardt, I. Schmidt, QCD constraints on the shape of polarized quark and gluon distributions. Nucl. Phys. B 441, 197 (1995)

    Article  ADS  Google Scholar 

  53. E.L. Berger, S.J. Brodsky, Quark structure functions of mesons and the Drell-Tan process. Phys. Rev. Lett. 42, 940 (1979)

    Article  ADS  Google Scholar 

  54. K.A. Mamo, I. Zahed, Diffractive photoproduction of \(J/\psi \) and \(\Upsilon \) using holographic QCD: Gravitational form factors and GPD of gluons in the proton. Phys. Rev. D 101, 086003 (2020)

    Article  ADS  Google Scholar 

  55. K.A. Mamo, I. Zahed, Electroproduction of heavy vector mesons using holographic QCD: From near threshold to high energy regimes. Phys. Rev. D 104, 066023 (2021)

    Article  ADS  Google Scholar 

  56. C.D. Roberts, A.G. Williams, Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477 (1994)

    Article  ADS  Google Scholar 

  57. C.D. Roberts, Electromagnetic pion form factor and neutral pion decay width. Nucl. Phys. A 605, 475 (1996)

    Article  ADS  Google Scholar 

  58. M.A. Pichowsky, T.-S.H. Lee, Pomeron-exchange and exclusive electroproduction of \(\rho \)-mesons in QCD. Phys. Lett. B 379, 1 (1996)

    Article  ADS  Google Scholar 

  59. M.A. Pichowsky, T.-S.H. Lee, Exclusive diffractive processes and the quark substructure of mesons. Phys. Rev. D 56, 1644 (1997)

    Article  ADS  Google Scholar 

  60. P. Maris, C.D. Roberts, \(\pi \)- and \(K\)-meson Bethe-Salpeter amplitudes. Phys. Rev. C 56, 3369 (1997)

    Article  ADS  Google Scholar 

  61. L. Chang, Y.-X. Liu, C.D. Roberts, Dressed-quark anomalous magnetic moments. Phys. Rev. Lett. 106, 072001 (2011)

    Article  ADS  Google Scholar 

  62. L. Chang, I.C. Cloët, C.D. Roberts, S.M. Schmidt, P.C. Tandy, Pion electromagnetic form factor at spacelike momenta. Phys. Rev. Lett. 111, 141802 (2013)

    Article  ADS  Google Scholar 

  63. S.-X. Qin, C.D. Roberts, Impressions of the continuum bound state problem in QCD. Chinese Phys. Lett. 37, 121201 (2020)

    Article  ADS  Google Scholar 

  64. Z.-Q. Yao, D. Binosi, Z.-F. Cui, C.D. Roberts, Semileptonic transitions: \(B_{(s)} \rightarrow \pi (K)\); \(D_s \rightarrow K\); \(D \rightarrow \pi , K\); and \(K \rightarrow \pi \). Phys. Lett. B 824, 136793 (2022)

    Article  Google Scholar 

  65. R. Alkofer, L. von Smekal, The infrared behavior of QCD Green’s functions. Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states. Phys. Rep. 353, 281 (2001)

    Article  ADS  MATH  Google Scholar 

  66. H. Sanchis-Alepuz, G. Eichmann, S. Villalba-Chávez, R. Alkofer, Delta and Omega masses in a three-quark covariant Faddeev approach. Phys. Rev. D 84, 096003 (2011)

    Article  ADS  Google Scholar 

  67. G. Eichmann, C.S. Fischer, Unified description of hadron-photon and hadron-meson scattering in the Dyson-Schwinger approach. Phys. Rev. D 85, 034015 (2012)

    Article  ADS  Google Scholar 

  68. N. Isgur, G. Karl, Positive-parity excited baryons in a quark model with hyperfine interactions. Phys. Rev. D 19, 2653 (1979)

    Article  ADS  Google Scholar 

  69. J.-M. Richard, An introduction to the quark model, Preprint at arXiv:1205.4326, talk at Ferrara International School Niccolò Cabeo 2012: Hadronic spectroscopy

  70. J. Segovia, D.R. Entem, F. Fernandez, E. Hernandez, Constituent quark model description of charmonium phenomenology. Int. J. Mod. Phys. E 22, 1330026 (2013)

    Article  ADS  Google Scholar 

  71. T. Sato, T.-S.H. Lee, Meson-exchange model for \(\pi N\) scattering and \(\gamma N \rightarrow \pi N\) reaction. Phys. Rev. C 54, 2660 (1996)

    Article  ADS  Google Scholar 

  72. A. Matsuyama, T. Sato, T.-S.H. Lee, Dynamical coupled-channel model of meson production reactions in the nucleon resonance region. Phys. Rep. 439, 193 (2007)

    Article  ADS  Google Scholar 

  73. B. Juliá-Díaz, T.-S.H. Lee, A. Matsuyama, T. Sato, Dynamical coupled-channels model of \(\pi N\) scattering in the \(W \le 2\) GeV nucleon resonance region. Phys. Rev. C 76, 065201 (2007)

    Article  ADS  Google Scholar 

  74. H. Kamano, S.X. Nakamura, T.-S.H. Lee, T. Sato, Nucleon resonances within a dynamical coupled-channels model of \(\pi N\) and \(\gamma N\) reactions. Phys. Rev. C 88, 035209 (2013)

    Article  ADS  Google Scholar 

  75. C.-W. Shen, F.-K. Guo, J.-J. Xie, B.-S. Zou, Disentangling the hadronic molecule nature of the \(P_c(4380)\) pentaquark-like structure, Nucl. Phys. A 954, (2016)

  76. L. Roca, J. Nieves, E. Oset, LHCb pentaquark as a \(\bar{D}^* \Sigma _c\)-\(\bar{D}^*\Sigma _c^*\) molecular state. Phys. Rev. D 92, 094003 (2015)

    Article  ADS  Google Scholar 

  77. U.-G. Meißner, J.A. Oller, Testing the \(\chi _{c1} p\) composite nature of the \(P_c(4450)\). Phys. Lett. B 751, 59 (2015)

    Article  ADS  Google Scholar 

  78. Y.-H. Lin, C.-W. Shen, F.-K. Guo, B.-S. Zou, Decay behaviors of the \(P_c\) hadronic molecules. Phys. Rev. D 95, 114017 (2017)

    Article  ADS  Google Scholar 

  79. L. Maiani, A.D. Polosa, V. Riquer, The new pentaquarks in the diquark model. Phys. Lett. B 749, 289 (2015)

    Article  ADS  Google Scholar 

  80. G.-N. Li, X.-G. He, M. He, Some predictions of diquark model for hidden charm pentaquark discovered at the LHCb. JHEP 2015, 128 (2015)

    Article  ADS  Google Scholar 

  81. Z.-G. Wang, Analysis of \(P_c(4380)\) and \(P_c(4450)\) as pentaquark states in the diquark model with QCD sum rules. Eur. Phys. J. C 76, 70 (2016)

    Article  ADS  Google Scholar 

  82. B.W. Lee, R.F. Sawyer, Regge poles and high-energy limits in field theory. Phys. Rev. 127, 2266 (1962)

    Article  ADS  Google Scholar 

  83. T. Regge, Introduction to complex orbital momenta. Nuovo Cim. 14, 951 (1959)

    Article  ADS  MATH  Google Scholar 

  84. T. Regge, Bound states, shadow states and Mandelstam representation. Nuovo Cim. 18, 947 (1960)

    Article  ADS  Google Scholar 

  85. A. Bottino, A.M. Longoni, T. Regge, Potential scattering for complex energy and angular momentum. Nuovo Cim. 23, 954 (1962)

    Article  ADS  Google Scholar 

  86. G.F. Chew, \(S\)-matrix theory of strong interactions without elementary particles. Rev. Mod. Phys. 34, 394 (1962)

    Article  ADS  Google Scholar 

  87. G.F. Chew, S.C. Frautschi, Regge trajectories and the principle of maximum strength for strong interactions. Phys. Rev. Lett. 8, 41 (1962)

    Article  ADS  Google Scholar 

  88. S. Mandelstam, Cuts in the angular-momentum plane I. Nuovo Cim. 30, 1127 (1963)

    Article  ADS  Google Scholar 

  89. A. Donnachie, P.V. Landshoff, Elastic scattering at large \(t\). Z. Phys. C 2, 55 (1979)

    Article  ADS  Google Scholar 

  90. A. Donnachie, P.V. Landshoff, Multi-gluon exchange in \(pp\) elastic scattering. Phys. Lett. 123B, 345 (1983)

    Article  ADS  Google Scholar 

  91. A. Donnachie, P.V. Landshoff, \(pp\) and \(\bar{p}p\) elastic scattering. Nucl. Phys. B 231, 189 (1984)

    Article  ADS  Google Scholar 

  92. I.I. Pomeranchuk, Equality of the nucleon and antinucleon total interaction cross section at high energies. JETP 34, 499 (1958)

    Google Scholar 

  93. M.L. Goldberger, K.M. Watson, Collision Theory (John Wiley and Sons Inc, New York, 1964)

    MATH  Google Scholar 

  94. Y. Oh, T.-S.H. Lee, One-loop corrections to \(\omega \) photoproduction near threshold. Phys. Rev. C 66, 045201 (2002)

    Article  ADS  Google Scholar 

  95. J. Breitweg et al., ZEUS Collaboration, Measurement of elastic \(\Upsilon \) photoproduction at HERA. Phys. Lett. B 437, 432 (1998)

  96. C. Adloff et al., H1 Collaboration, Elastic photoproduction of \(J/\psi \) and \(\Upsilon \) mesons at HERA. Phys. Lett. B 483, 23 (2000)

  97. S. Chekanov et al., ZEUS Collaboration, Exclusive photoproduction of \(\Upsilon \) mesons at HERA. Phys. Lett. B 680, 4 (2009)

  98. R. Aaij et al., Measurement of \(\Upsilon \) production in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. Eur. Phys. J. C 72, 2025 (2012)

    Article  ADS  Google Scholar 

  99. M. Derrick et al., ZEUS Collaboration, Measurement of elastic \(\rho ^0\) photoproduction at HERA. Z. Phys. C 69, 39 (1995)

  100. W.D. Shambroom et al., Diffractive production of vector mesons in muon-proton scattering at \(150\) and \(100\) GeV. Phys. Rev. D 26, 1 (1982)

    Article  ADS  Google Scholar 

  101. J. Ballam et al., Vector-meson production by polarized photons at \(2.8\), \(4.7\), and \(9.3\) GeV. Phys. Rev. D 7, 3150 (1973)

    Article  ADS  Google Scholar 

  102. W. Struczinski et al., Aachen-Hamburg-Heidelberg-München Collaboration, Study of photoproduction on hydrogen in a streamer chamber with tagged photons for \(1.6 \text{GeV} < E_\gamma < 6.3 \text{ GeV }\): Topological and reaction cross sections, Nucl. Phys. B 108, 45 (1976)

  103. R.M. Egloff et al., Measurements of elastic \(\rho \)- and \(\phi \)-meson photoproduction cross sections on protons from \(30\) to \(180\) GeV. Phys. Rev. Lett. 43, 657 (1979)

  104. D. Aston et al., Bonn-CERN-Ecole Polytechnique-Glasgow-Lancaster-Manchester-Orsay-Paris VI-Paris VII-Rutherford-Sheffield Collaboration, Photoproduction of \(\rho ^0\) and \(\omega \) on hydrogen at photon energies of \(20\) to \(70\) GeV. Nucl. Phys. B 209, 56 (1982)

    Article  ADS  Google Scholar 

  105. M. Derrick et al., ZEUS Collaboration, Measurement of elastic \(\phi \) photoproduction at HERA. Phys. Lett. B 377, 259 (1996)

  106. H.-J. Behrend, J. Bodenkamp, W.P. Hesse, W.A. McNeely Jr., T. Miyachi, D.C. Fries, P. Heine, H. Hirschmann, A. Markou, E. Seitz, Elastic and inelastic \(\phi \) photoproduction. Nucl. Phys. B 144, 22 (1978)

  107. Y. Oh, T.-S.H. Lee, \(\rho \) meson photoproduction at low energies. Phys. Rev. C 69, 025201 (2004)

    Article  ADS  Google Scholar 

  108. S. Sasaki, private communications, (2020)

  109. Y. Hatta, M. Strikman, J. Xu, F. Yuan, Sub-threshold \(J/\psi \) and \(\Upsilon \) production in \(\gamma A\) collisions. Phys. Lett. B 803, 135321 (2020)

    Article  Google Scholar 

  110. J.-J. Wu, T.-S.H. Lee, Production of \(J/\Psi \) on the nucleon and on deuteron targets. Phys. Rev. C 88, 015205 (2013)

    Article  ADS  Google Scholar 

  111. H. Feshbach, Theoretical Nuclear Physics: Nuclear Reactions (John Wiley and Sons Inc, New York, 1992)

    Google Scholar 

  112. T. Kawanai, S. Sasaki, Heavy quarkonium potential from Bethe-Salpeter wave function on the lattice. Phys. Rev. D 89, 054507 (2014)

    Article  ADS  Google Scholar 

  113. T. Kawanai, S. Sasaki, Potential description of charmonium and charmed-strange mesons from lattice QCD. Phys. Rev. D 92, 094503 (2015)

    Article  ADS  Google Scholar 

  114. Y. Lyu, T. Doi, T. Hatsuda, Y. Ikeda, J. Meng, K. Sasaki, T. Sugiura, Attractive \(N\)-\(\phi \) interaction and two-pion tail from lattice QCD near physical point, Preprint at arXiv:2205.10544

  115. A. Sommerfeld, Partial Differential Equations in Physics, Pure and Applied Mathematics: A Series of Monographs and Textbooks Vol. 1 (Academic Press, 1949)

  116. G.N. Watson, The diffraction of electric waves by the Earth. Proc. Roy. Soc. Lond. A 95, 83 (1918)

    Article  ADS  MATH  Google Scholar 

  117. G.N. Watson, The transmission of electric waves round the Earth. Proc. Roy. Soc. Lond. A 95, 546 (1919)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Shoichi Sasaki for providing the information on the \(J/\varPsi \)-N potentials from LQCD of Refs. [45, 108] and to Craig Roberts for helpful discussions. We also thank Yuxun Guo and Kiminad Mamo for their help in checking the results from their models presented in this paper. The work of T.-S.H.L. was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. The work of S.S. and Y.O. was supported by the National Research Foundation of Korea (NRF) under Grants No. NRF-2020R1A2C1007597 and No. NRF-2018R1A6A1A06024970 (Basic Science Research Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-S. H. Lee.

Additional information

Communicated by Nicolas Alamanos.

Appendix A: Regge phenomenology

Appendix A: Regge phenomenology

There exists extensive literature [14,15,16] on Regge phenomenology. For our purposes, we will only give sufficiently self-contained explanations which are needed to present the formulas of Pomeron-exchange models.

Fig. 33
figure 33

Momentum variables of the s-channel (left) and t-channel scattering (right)

Considering the two-body scattering, the amplitudes of s-channel \(1(p_1)+2(p_2) \rightarrow 3(p_3)+4(p_4)\) and t-channel \(1(p_1)+ 3(-p_3) \rightarrow 2(-p_2)+4(p_4)\) scattering, as shown in Fig. 33, are written in terms of the usual Mandelstam variables defined by

$$\begin{aligned} s= & {} (p_1+p_2)^2 , \end{aligned}$$
(A.1)
$$\begin{aligned} t= & {} (p_1-p_3)^2 \end{aligned}$$
(A.2)

for the s-channel scattering of Fig. 33(left) and

$$\begin{aligned} s_t= & {} (p_1+(-p_3))^2=(p_1-p_3)^2=t, \end{aligned}$$
(A.3)
$$\begin{aligned} t_t= & {} (p_1-(-p_2))^2=(p_1+p_2)^2=s \end{aligned}$$
(A.4)

for the t-channel of Fig. 33(right). One of the steps in developing Regge phenomenology is to assume the crossing symmetry that the scattering amplitudes T(ts) for the s-channel and \(T_t(t_t,s_t)\) for the t-channel are related by

$$\begin{aligned} T(t,s) =T_t(s,t)=T_t(t_t,s_t)\,. \end{aligned}$$
(A.5)

It is important to note here that s (\(s_t\)) is the total collision energy in the s-channel (t-channel) CM frame, and t (\(t_t\)) defines the corresponding momentum-transfer of the scattering. Thus the crossing symmetry implies that a bound or resonance state, called R, in the t-channel scattering \(1+3\rightarrow R \rightarrow 2+4\) can be an exchanged particle R in the s-channel \(1+2\rightarrow 3+4\) scattering.

We now describe the essential steps in getting the s-channel scattering amplitude T(ts) from the t-channel scattering amplitude \(T_t(t_t,s_t)\) by using the crossing symmetry relation of Eq. (A.5). Considering \(1(p_1) + 3(-p_3) \rightarrow 2(-p_2) + 4(p_4)\) in the CM system of the t-channel, we then have the following definitions of the momentum variables:

$$\begin{aligned} p= & {} |\textbf{p}_1|=|\textbf{p}_3| ,\nonumber \\ q= & {} |\textbf{p}_2|=|\textbf{p}_4| , \end{aligned}$$
(A.6)

and

$$\begin{aligned} s_t= & {} t= [E_{1}(p)+E_{3}(p)]^2=[E_2(q)+E_4(q)]^2, \end{aligned}$$
(A.7)
$$\begin{aligned} t_t= & {} s=m^2_1+m^2_2+2E_1(p)E_2(q)-2\,qp \cos \theta _t , \end{aligned}$$
(A.8)

where \(\cos \theta _t=\hat{p}_1\cdot (-\hat{p}_2)\) defines the scattering angle \(\theta _t\) in t-channel. Eq. (A.8) then leads to

$$\begin{aligned} \cos \theta _t=\frac{1}{2pq} \left[ s-m^2_1-m^2_2+2E_1(p)E_2(q) \right] . \end{aligned}$$
(A.9)

Note that p and q are function of t as can be seen from Eq. (A.7) and hence for a given t, \(\cos \theta _t\) depends linearly on s.

Fig. 34
figure 34

Contour in l-plane

The next step is to examine the partial-wave expansion of t-channel amplitude. By using the relations Eqs. (A.7)–(A.9), we then have

$$\begin{aligned} T_t(t_t,s_t)= & {} T_t(t_t(\cos \,\theta _t),t) \nonumber \\= & {} \sum _{l=0}^{\infty }(2l+1)P_l(\cos \,\theta _t) A(l,t) , \end{aligned}$$
(A.10)

where \(P_l(x)\) is a Legendre polynomial in x. In the complex-l plane, we apply the Watson-Sommerfeld transformation [115,116,117] to write the above expression as

$$\begin{aligned} T(t,s)= & {} T_t(t_t,s_t) \nonumber \\= & {} \frac{1}{2\pi i}\int _C\frac{\pi }{\sin l\pi }P_l(-\cos \theta _t)A(l,t)\, dl , \end{aligned}$$
(A.11)

where C is the contour indicated in Fig. 34. The denominator \(\sin l\pi \) generates the poles (solid circles) indicated in Fig. 34. Within the non-relativistic quantum mechanics, Regge [83,84,85] showed that if the s-channel amplitude T(ts) is defined by a local potential like Yukawa potential \((\sim e^{-\mu r}/r\)), A(lt) is analytic in the complex l-plane, aside from poles in the \(\text{ Re }(l) \ge -1/2\). It can therefore be written in the following form:

$$\begin{aligned} A(l,t)=\sum _{n}\frac{\beta _n(t)}{l-\alpha _n(t)} . \end{aligned}$$
(A.12)

Closing the contour C at infinity and through the \(\text{ Re }(J)=-1/2\) line, as indicated in Fig. 34, and using the Cauchy’s theorem, Eq. (A.11) then becomes

$$\begin{aligned} T(t,s)= & {} T_t(t_t,s_t) \nonumber \\= & {} \int _{-1/2-i\infty }^{-1/2+i\infty }\frac{\pi }{\sin \,l\pi } P_l(-\cos \,\theta _t)A(l,t)\, dl \nonumber \\{} & {} +\sum _{n}\beta _n(t)P_{\alpha _n(t)}(-\cos \theta _t) \frac{1}{\sin \pi \alpha _n(t)} . \end{aligned}$$
(A.13)

Here \(\alpha _n(t)\) is called the Regge trajectory which leads to poles of the amplitude at

$$\begin{aligned} \alpha _n(t= M_{L_n}^2)= L_n\,;\quad L_n = 0,1,2, \dots . \end{aligned}$$
(A.14)

At these pole positions, the usual Legendre polynomial has the property \(P_{\alpha _n(t)}(-\cos \theta ) \rightarrow (-1)^{L_n}P_{L_n}(\cos \theta )\). Thus it is suggestive that \(L_n\) can be interpreted as the angular momentum of the particle formed in the t-channel process with mass \(M_{L_n}\) because \(t=s_t=[E_1(p)+E_2(p)]^2\). These particles are interpreted as the exchanged particle in s-channel scattering. If this interpretation is correct, we can use the particle spectrum found in t-channel scattering to define the Regge trajectory. Thus the main feature of the Regge phenomenology is: the particle spectrum can define the scattering amplitudes.

The first term in Eq. (A.13) is neglected in practice. It is also extended to define natural-parity exchange from the unnatural-parity exchange. The amplitude of s-channel scattering amplitude is then of the following form:

$$\begin{aligned} T(s,t)=\sum _{n}\beta _n(t)\frac{P_{\alpha _n(t)}(-\cos \theta _t) +s_n\,P_{\alpha _n(t)}(+\cos \theta _t)}{2\sin [\pi \alpha _n(t)]} , \end{aligned}$$
(A.15)

where the signature of the trajectory, \(s_n=+1\) \((-1)\) corresponds to even (odd) parity exchanges. In the high energy limit with very large s and \(s \gg |t|\), \(\cos \theta _t \sim -s/(2q(t)p(t))\), as can be seen from Eq. (A.9). It follows that

$$\begin{aligned} P_{\alpha _n(t)}(-\cos \theta _t) \sim \left( \frac{s}{2p(t)q(t)}\right) ^{\alpha _n(t)} . \end{aligned}$$
(A.16)

Here we recall Eq. (A.7) to note that the momenta p and q of t-channel as functions of t of the s-channel scattering. We then have

$$\begin{aligned} T(s,t)= & {} \sum _{n}F_{t}(t) \frac{1+s_ne^{-i\pi \alpha _n(t)}}{2\sin [\pi \alpha _n(t)]} \left[ \alpha _{1,n}(t)s \right] ^{\alpha _n(t)} , \end{aligned}$$
(A.17)

where

$$\begin{aligned} F_{t}(t)= \beta _n(t) \left( \frac{\alpha _{1,n}}{2p(t)q(t)} \right) ^{-\alpha _n(t)} . \end{aligned}$$
(A.18)

If we write \(F_{f}(t)=\beta ^{13}_n(t)\beta ^{24}_n(t)\) and assume that \(\beta ^{13}_n(t)\) and \(\beta ^{24}_n(t)\) characterize the hadron structure, we then have the following form

$$\begin{aligned} T(s,t)=\sum _{n}\beta ^{13}_n(t) \beta ^{24}_n(t) \frac{1+s_ne^{-i\pi \alpha _n(t)}}{2\sin [\pi \alpha _n(t)]} \left[ \alpha _{1,n}(t)s \right] ^{\alpha _n(t)} . \end{aligned}$$
(A.19)

The amplitude can then be interpreted as the exchange of particles with masses defined by \(\alpha _n(t=M^2_{L_n})= L_n\). This is an intuitively very attractive interpretation of the scattering. However, there exists no successful derivation of Eq. (A.19) from relativistic quantum field theory and the form factors \(\beta ^{13}_n(t)\) and \( \beta ^{24}_n(t)\) are determined experimentally or calculated from a theoretical model.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, TS.H., Sakinah, S. & Oh, Y. Models of \(J/\varPsi \) photo-production reactions on the nucleon. Eur. Phys. J. A 58, 252 (2022). https://doi.org/10.1140/epja/s10050-022-00901-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00901-9

Navigation