Skip to main content
Log in

Fusion dynamics of astrophysical reactions using different transmission coefficients

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The heavy-ion fusion reactions play a pivotal role in stellar burning processes in different astrophysical scenarios. The \(^{12}\)C+\(^{12}\)C, \(^{12}\)C+\(^{16}\)O and \(^{16}\)O+\(^{16}\)O fusion reactions hold paramount significance in the later stages of the evolution of the heavy mass stars. The stellar energies at which these reactions proceed in astrophysical environments lie far below their respective Coulomb barriers and are beyond the reach of the present experimental laboratories, thus essential to explore the theoretical predictions. In this study, we have investigated the fusion dynamics of astrophysical heavy-ion reactions using the nuclear potential obtained within the relativistic mean-field (RMF) approach. Three different methods, namely the Hill–Wheeler, Ahmed, and Kemble approximations, are used to determine the barrier transmission coefficient at energies of astrophysical significance. The fusion cross-section and the astrophysical S-factor are calculated using the \(\ell \)-summed Wong model. Comparison of the cross-section for all three transmission coefficients with the experimental data manifested that the Kemble approximation gives a better overlap with the experimental data at far below barrier energies. Thus, the Kemble transmission coefficient furnished with nuclear potential obtained from RMF formalism is observed to be suitable for determining the reaction rates of fusion reactions at energies of astrophysical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Any data that support the findings of this study are included in the manuscript.]

References

  1. L.F. Canto, V. Guimaraes, J. Lubian, M.S. Hussein, Eur. Phys. J. A 56, 281 (2020)

    Article  ADS  Google Scholar 

  2. C.L. Jiang, B.B. Back, K.E. Rehm, K. Hagino, G. Montagnoli, A.M. Stefanini, Eur. Phys. J. A 57, 235 (2021)

    Article  ADS  Google Scholar 

  3. B.B. Back, H. Esbensen, C.L. Jiang, K.E. Rehm, Rev. Mod. Phys. 86, 317 (2014)

    Article  ADS  Google Scholar 

  4. M. Dasgupta, D.J. Hinde, N. Rowley, A.M. Stefanini, Annu. Rev. Nucl. Part. Sci. 48, 401 (1998)

    Article  ADS  Google Scholar 

  5. A. Shukla, S.K. Patra, Chapter 5-Nuclear Structure Physics (CRC Press, Boca Raton, 2020)

    Book  Google Scholar 

  6. D.G. Yakovlev, L.R. Gasques, A.V. Afanasjev, M. Beard, M. Wiescher, Phys. Rev. C 74, 035803 (2006)

    Article  ADS  Google Scholar 

  7. L.R. Gasques, A.V. Afanasjev, E.F. Aguilera, M. Beard, L.C. Chamon, P. Ring, M. Wiescher, D.G. Yakovlev, Phys. Rev. C 72, 025806 (2005)

    Article  ADS  Google Scholar 

  8. C.L. Jiang, K.E. Rehm, B.B. Back, R.V.F. Janessens, Phys. Rev. C 79, 044601 (2009)

    Article  ADS  Google Scholar 

  9. X.D. Tang, AIP Conf. Proc. 1947, 020021–1 (2017)

    Google Scholar 

  10. S. Woosley, A. Heger, T. Weaver, Rev. Mod. Phys. 74, 1015 (2002)

    Article  ADS  Google Scholar 

  11. W. Fowler, G. Caughlan, B. Zimmerman, Annu. Rev. Astron. Astrophys. 13, 69 (1975)

    Article  ADS  Google Scholar 

  12. Q. Haider, J.Y. Shapiro, A. Sharma, Nuov Cim. A 106, 343 (1993)

    Article  ADS  Google Scholar 

  13. C.L. Jiang, K.E. Rehm, B.B. Back, R.V.F. Janssens, Phys. Rev. C 75, 015803 (2007)

    Article  ADS  Google Scholar 

  14. M. Beard, A.V. Afanasjev, L.C. Chamon, L.R. Gasques, M. Wiescher, D.G. Yakovlev, At. Data Nucl. Data Tab. 96, 541 (2010)

    Article  ADS  Google Scholar 

  15. Y. Taniguchi, M. Kimura, Phys. Lett. B 800, 135086 (2020)

    Article  Google Scholar 

  16. M. Assunção, P. Descouvemont, J. Phys.: Conf. Ser. 590, 012038 (2015)

    Google Scholar 

  17. L.R. Gasques, E.F. Brown, A. Chieffi, C.L. Jiang, M. Limongi, C. Rolfs, M. Wiescher, D.G. Yakovlev, Phys. Rev. C 76, 035802 (2007)

    Article  ADS  Google Scholar 

  18. M. Wiescher, F. Kappeler, K. Langanke, Annu. Rev. Astron. Astrophys. 50, 165 (2012)

    Article  ADS  Google Scholar 

  19. A. Tumino et al., Nature 557, 687 (2018)

    Article  ADS  Google Scholar 

  20. C.L. Jiang et al., Phys. Rev. C 97, 012801(R) (2018)

    Article  ADS  Google Scholar 

  21. S.C. Wu, C.A. Barns, Nucl. Phys. A 422, 373 (1984)

    Article  ADS  Google Scholar 

  22. J.G. Duarte et al., J. Phys. G: Nucl. Part. Phys. 42, 065102 (2015)

    Article  ADS  Google Scholar 

  23. P.R. Christensen, Z.E. Switkowski, R.A. Dayras, Nucl. Phys. A 280, 189 (1977)

    Article  ADS  Google Scholar 

  24. E.F. Aguilera et al., Phys. Rev. C 73, 064601 (2006)

    Article  ADS  Google Scholar 

  25. J.R. Patterson, H. Winkler, C.S. Zaidinis, Astrophys. J. 157, 367 (1969)

    Article  ADS  Google Scholar 

  26. X. Fang et al., Phys. Rev. C 96, 045804 (2017)

    Article  ADS  Google Scholar 

  27. G. Fruet et al., Phys. Rev. Lett. 124, 192701 (2020)

    Article  ADS  Google Scholar 

  28. W. Tan et al., Phys. Rev. Lett. 124, 192702 (2020)

    Article  ADS  Google Scholar 

  29. J. Thomas, Y.T. Chen, S. Hinds, D. Meredith, M. Oslon, Phy. Rev. C 33, 1679 (1986)

    Article  ADS  Google Scholar 

  30. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979)

    Article  ADS  Google Scholar 

  31. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)

    Article  ADS  Google Scholar 

  32. J. Meng, Relativistic Density Functional For Nuclear Structure. International Review of Nuclear Physics (Word Scientific, Singapore, 2016)

    Book  Google Scholar 

  33. G..A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A..V. Afanasjev, P. Ring, Phys. Lett. B 671, 36 (2009)

    Article  ADS  Google Scholar 

  34. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)

    Article  ADS  Google Scholar 

  35. J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006)

    Article  ADS  Google Scholar 

  36. B.B. Singh, M. Bhuyan, S.K. Patra, R.K. Gupta, J. Phys. G: Nucl. Part. Phys. 39, 025101 (2012)

    Article  ADS  Google Scholar 

  37. B.B. Sahu, S.K. Singh, M. Bhuyan, S.K. Biswal, S.K. Patra, Phys. Rev. C 84, 034614 (2014)

    Article  ADS  Google Scholar 

  38. C. Lahiri, S.K. Biswal, S.K. Patra, Int. J. Mod. Phys. E 25, 1650015 (2016)

    Article  ADS  Google Scholar 

  39. M. Bhuyan, R. Kumar, Phys. Rev. C 98, 054610 (2018)

    Article  ADS  Google Scholar 

  40. S. Rana, R. Kumar, M. Bhuyan, Phys. Rev. C 104, 024619 (2021)

    Article  ADS  Google Scholar 

  41. M. Bhuyan, R. Kumar, S. Rana, D. Jain, S.K. Patra, B.V. Carlson, Phys. Rev. C 101, 044603 (2020)

    Article  ADS  Google Scholar 

  42. R. Kumar, S. Rana, M. Bhuyan, P. Mohr, Phys. Rev. C 105, 044606 (2022)

    Article  ADS  Google Scholar 

  43. S. Rana, M. Bhuyan, R. Kumar, Phys. Rev. C 105, 054613 (2022)

    Article  ADS  Google Scholar 

  44. K. Hagino, N. Takigawa, Prog. Theor. Phys. 128, 1061 (2012)

    Article  ADS  Google Scholar 

  45. A.J. Toubiana, L.F. Canto, M.S. Hussein, Braz. J. Phys. 47, 321 (2017)

  46. A.J. Toubiana, L.F. Canto, M.S. Hussein, Eur. Phys. J. A 53, 34 (2017)

    Article  ADS  Google Scholar 

  47. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953)

  48. K.W. Ford, D.L. Hill, M. Wakano, J.A. Wheeler, Ann. Phys. 7, 239 (1959)

  49. Z. Ahmed, Phys. Lett. A 157, 1 (1991)

  50. R. Kumar, M. Bansal, S.K. Arun, R.K. Gupta, Phys. Rev. C 80, 034618 (2009)

    Article  ADS  Google Scholar 

  51. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973)

    Article  ADS  Google Scholar 

  52. E.C. Kemble, Phys. Rev. 48, 549 (1935)

    Article  ADS  Google Scholar 

  53. VYu. Denisov, Eur. Phys. J. A 58, 91 (2022)

    Article  ADS  Google Scholar 

  54. K. Hagino, K. Ogata, A.M. Moro, Prog. Part. Nucl. Phys. 125, 103951 (2022)

    Article  Google Scholar 

  55. K. Hagino, N. Rowley, A.T. Kruppa, Comput. Phys. Commun. 123, 143 (1999)

    Article  ADS  Google Scholar 

  56. G. Montagnoli, A.M. Stefanini, Eur. Phys. J. A 53, 169 (2017)

    Article  ADS  Google Scholar 

  57. J.Y. Zeng, T.S. Cheng, Nucl. Phys. A 405, 1 (1983)

    Article  ADS  Google Scholar 

  58. H. Molique, J. Dudek, Phys. Rev. C 56, 1795 (1997)

    Article  ADS  Google Scholar 

  59. G.A. Lalazissis, D. Vretenar, P. Ring, M. Stoitsov, L.M. Robledo, Phys. Rev. C 60, 014310 (1999)

    Article  ADS  Google Scholar 

  60. G.A. Lalazissis, D. Vretenar, P. Ring, Nucl. Phys. A 650, 133 (1999)

    Article  ADS  Google Scholar 

  61. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984)

    Article  ADS  Google Scholar 

  62. D.G. Madland, J.R. Nix, Nucl. Phys. A 476, 1 (1988)

    Article  ADS  Google Scholar 

  63. S. Rana, R. Kumar, M. Bhuyan, Astro. Nach. 342, 473 (2021)

    Article  ADS  Google Scholar 

  64. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn. (Pearson Prentice Hall, Princeton, 2004), p.327

    Google Scholar 

  65. R.K. Gupta, W. Greiner, Int. J. Mod. Phys. E 3, 335 (1994)

    Article  ADS  Google Scholar 

  66. K. Sharma, G. Sawhney, M.K. Sharma, R.K. Gupta, Nucl. Phys. A 972, 1 (2018)

    Article  ADS  Google Scholar 

  67. M. Kaur, B. Singh, S. Kaur, R.K. Gupta, Phys. Rev. C 99, 014614 (2019)

    Article  ADS  Google Scholar 

  68. J.G. Deng, H.F. Zhang, Phys. Rev. C 102, 044314 (2020)

    Article  ADS  Google Scholar 

  69. K. Hagino, A.B. Balantekin, Phys. Rev. A 70, 032106 (2004)

    Article  ADS  Google Scholar 

  70. N. Froman, P. Froman, W.K.B. Approximation, Contributions to the Theory, 1st edn. (North-Holland, New York, 1965)

    MATH  Google Scholar 

  71. M. Beckerman, J. Ball, H. Enge, M. Salomaa, A. Sperduto, S. Gazes, A. DiRienzo, J.D. Molitoris, Phys. Rev. C 23, 1581 (1981)

    Article  ADS  Google Scholar 

  72. C.A. Barnes, in Essays in Nuclear Astrophysics. ed. by C.A. Barnes, D.D. Clayton, D.N. Schramm (Cambridge University Press, Cambridge, 1982), p.193

  73. P.R.S. Gomes, J. Lubian, I. Padron, R.M. Anjos, Phys. Rev. C 71, 017601 (2005)

    Article  ADS  Google Scholar 

  74. M. Beckerman, M. Salomaa, A. Sperduto, J.D. Molitoris, A. DiRienzo, Phys. Rev. C 25, 837 (1982)

    Article  ADS  Google Scholar 

  75. D.E. DiGregorio et al., Phys. Rev. C 39, 516 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Board of Research in Nuclear Sciences (BRNS), Sanction No. 58/14/12/2019-BRNS, Science Engineering Research Board (SERB), File No. CRG/2021/001229, FAPESP Project Nos. 2017/05660-0, and FOSTECT Project No. FOSTECT.2019B.04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bhuyan.

Additional information

Communicated by Alexis Diaz-Torres.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Kumar, R., Patra, S.K. et al. Fusion dynamics of astrophysical reactions using different transmission coefficients. Eur. Phys. J. A 58, 241 (2022). https://doi.org/10.1140/epja/s10050-022-00893-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00893-6

Navigation