Skip to main content
Log in

High-resolution measurement of hypernuclear events in a nuclear emulsion with hard X-ray microscopy

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A high-resolution measurement method based on X-ray microscopy was developed to analyze double-strangeness hypernuclear events with a complex topology in a nuclear emulsion. In a feasibility study performed on \(\alpha \)-decay events in emulsions, the resolution of the X-ray microscopy in the focal plane was found to be 0.2 \(\upmu {\mathrm{m}}\), which shows an improvement by \(\sim 2.4\) times to that of the optical microscopy used for conventional analysis. The extent to which the emulsion underwent modification as a result of X-ray irradiation was also evaluated. The modification mainly occurred in the form of a change in its thickness; however, this affection was adequately small to perform X-ray imaging if the duration of the irradiation was sufficiently short. Stereo imaging with X-ray microscopy improved the resolution by \(\sim 2.5\) times to 0.28 \(\upmu {\mathrm{m}}\) along the optical axis compared with the depth of field of the optical microscope, 0.7 \(\upmu {\mathrm{m}}\). We applied the developed method to the study of a double-strangeness hypernuclear event. The uncertainty on the position of the vertex point and the binding energy of the \(\Xi ^-\) and \(^{14}\)N system was improved from 3 \(\upmu {\mathrm{m}}\) to 0.04 \(\upmu {\mathrm{m}}\) and \(\pm 3\) MeV to \(\pm 0.86\) MeV, respectively. The binding energy was deduced to be \(-1.23 \pm 0.86~{\mathrm{MeV}}\), and this result indicates that a \(\Xi ^-\) atomic state is produced in the observed event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. C. Rappold, et al., Phys. Lett. B 728, 543 (2014). https://www.sciencedirect.com/science/article/pii/S0370269313010125

  2. T.O. Yamamoto, et al., Phys. Rev. Lett. 115, 222501 (2015). https://link.aps.org/doi/10.1103/PhysRevLett.115.222501

  3. S.B. Yang, et al., Phys. Rev. Lett. 120, 132505 (2018). https://link.aps.org/doi/10.1103/PhysRevLett.120.132505

  4. A. Esser, et al., Phys. Rev. Lett. 114(23), 232501 (2015). https://link.aps.org/doi/10.1103/PhysRevLett.114.232501

  5. T. Gogami, et al., Phys. Rev. C 103(23), L041301 (2021). https://link.aps.org/doi/10.1103/PhysRevC.103.L041301

  6. S. Acharya, et al., Phys. Lett. B 797, 134905 (2019). https://www.sciencedirect.com/science/article/pii/S0370269319306276

  7. The STAR Collaboration, Nat. Phys. 16(4), 409 (2020). https://doi.org/10.1038/s41567-020-0799-7

    Article  Google Scholar 

  8. T. Fukuda, et al., Phys. Rev. C 58, 1306 (1998). https://link.aps.org/doi/10.1103/PhysRevC.58.1306

  9. J.K. Ahn, et al., Phys. Rev. Lett. 87, 132504 (2001). https://link.aps.org/doi/10.1103/PhysRevLett.87.132504

  10. A. Feliciello, T. Nagae, Rep. Progr. Phys. 78(9), 096301 (2015). https://doi.org/10.1088/0034-4885/78/9/096301

    Article  Google Scholar 

  11. K. Nakazawa, Proceedings of the 12th International Conference on Hypernuclear and Strange Particle Physics (HYP2015) (2017). https://journals.jps.jp/doi/abs/10.7566/JPSCP.17.031001

  12. E. Hiyama, K. Nakazawa, Ann. Rev. Nucl. Part. Sci. 68, 131 (2018). https://doi.org/10.1146/annurev-nucl-101917-021108

    Article  Google Scholar 

  13. A. Gal, E.V. Hungerford, D.J. Millener, Rev. Mod. Phys. 88, 035004 (2016). https://link.aps.org/doi/10.1103/RevModPhys.88.035004

  14. A. Gal, EPJ Web Conf. 259, 08002 (2022). https://doi.org/10.1051/epjconf/202225908002

    Article  Google Scholar 

  15. E. Hiyama, et al., Phys. Rev. Lett. 124, 092501 (2020). https://link.aps.org/doi/10.1103/PhysRevLett.124.092501

  16. T.R. Saito et al., Nat. Rev. Phys. (2021). https://doi.org/10.1038/s42254-021-00371-w

  17. M. Danysz, et al., Nucl. Phys. 49, 121 (1963). https://www.sciencedirect.com/science/article/pii/0029558263900804

  18. M. Danysz, et al., Phys. Rev. Lett. 11, 29 (1963). https://link.aps.org/doi/10.1103/PhysRevLett.11.29

  19. S. Aoki et al., Progr. Theor. Phys. 85(6), 1287 (1991). https://doi.org/10.1143/PTP.85.1287

    Article  Google Scholar 

  20. S. Aoki, et al., Nucl. Phys. A 828, 191 (2009). https://www.sciencedirect.com/science/article/pii/S0375947409005065

  21. H. Takahashi, et al., Phys. Rev. Lett. 87, 212502 (2001). https://link.aps.org/doi/10.1103/PhysRevLett.87.212502

  22. K. Nakazawa, Nucl. Phys. A 835, 207 (2010). https://www.sciencedirect.com/science/article/pii/S0375947410001983

  23. J.K. Ahn, et al., Phys. Rev. C 88, 014003 (2013). https://link.aps.org/doi/10.1103/PhysRevC.88.014003

  24. K. Nakazawa, et al., Prog. Theor. Exp. Phys. 2015, 033D02 (2015). https://doi.org/10.1093/ptep/ptv008

  25. K. Imai, K. Nakazawa, H. Tamura, et al., J-PARC E07 experiment. Systematic Study of Double-Strangeness System with an Emulsion-Counter Hybrid Method (http://j-parc.jp/researcher/Hadron/en/pac_0606/pdf/p07-Nakazawa.pdf, 2006)

  26. H. Ekawa, et al., Prog. Theor. Exp. Phys. 2019, 021D02 (2019). https://doi.org/10.1093/ptep/pty149

  27. A.N.L. Nyaw, et al., Bull. Soc. Photogr. Imag. Japan. 30, 22 (2020). https://www.spij.jp/wp-content/uploads/2021/01/BSPIJ30_022.pdf

  28. S.H. Hayakawa, et al., Phys. Rev. Lett. 126, 062501 (2021). https://link.aps.org/doi/10.1103/PhysRevLett.126.062501

  29. M. Yoshimoto, et al., Prog. Theor. Exp. Phys. 2021(7), 073D02 (2021). https://doi.org/10.1093/ptep/ptab073

  30. A. Ichikawa, et al., Phys. Lett. B 500, 37 (2001). https://www.sciencedirect.com/science/article/pii/S0370269301000491

  31. M. Natsume, et al., Nucl. Instrum. Meth. Phys. Res. Sect. A 575, 439 (2007). https://www.sciencedirect.com/science/article/pii/S0168900207004603

  32. T. Naka, et al., Rev. Sci. Instr. 86, 073701 (2015). https://aip.scitation.org/doi/10.1063/1.4926350

  33. J. Yoshida, et al., Nucl. Instrum. Meth. Phys. Res. Sect. A 847, 86 (2017). https://doi.org/10.1016/j.nima.2016.11.044

  34. J. Yoshida, et al., Nucl. Instrum. Meth. Phys. Res. Sect. A 989, 164930 (2020). http://www.sciencedirect.com/science/article/pii/S0168900220313279

  35. B. Lai et al., Rev. Sci. Instr. 66, 2287 (1995). https://doi.org/10.1063/1.1145666

    Article  Google Scholar 

  36. K. Uesugi et al., J. Phys. Conf. Ser. 849, 012051 (2017). https://doi.org/10.1088/1742-6596/849/1/012051

  37. Y. Suzuki, et al., X-Ray Optics and Instrumentation 2010, 824387 (2010). https://www.hindawi.com/journals/xroi/2010/824387

  38. SPring-8. “BL47XU OUTLINE” (2021). http://www.spring8.or.jp/wkg/BL47XU/instrument/lang-en/INS-0000001375/instrument_summary_view

  39. A. Takeuchi, Y. Suzuki, K. Uesugi, AIP Conference Proceedings 1365(1), 301 (2011). https://aip.scitation.org/doi/abs/10.1063/1.3625364

  40. S. Kinbara, et al., Prog. Theor. Exp. Phys. 2019, 011H01 (2019). https://doi.org/10.1093/ptep/pty137

  41. M. Hoshino, et al., J. Synchr. Radiat. 18, 569 (2011). http://scripts.iucr.org/cgi-bin/paper?S0909049511017547

  42. C. Rau et al., SPIE 6318, 456 (2006). https://doi.org/10.1117/12.680975

    Article  Google Scholar 

  43. K. Uesugi et al., SPIE 6318, 447 (2006). https://doi.org/10.1117/12.679822

    Article  Google Scholar 

  44. W.H. Barkas, Pure Appl. Phys. Ser. 15 I II (Academic Press, 1963)

  45. P.M. Lin, et al., Bull. Soc. Photogr. Imag. Japan 32(1), 10-14 (2022). https://www.spij.jp/wp-content/uploads/2022/06/BSPIJ32_010.pdf

  46. D. Zhu, C.B. Dover, A. Gal, M. May, Phys. Rev. Lett. 67, 2268 (1991). https://doi.org/10.1103/PhysRevLett.67.2268

    Article  Google Scholar 

  47. C.J. Batty, E. Friedman, A. Gal, Phys. Rev. C 59, 295 (1999). https://doi.org/10.1103/PhysRevC.59.295

    Article  Google Scholar 

  48. M. Yamaguchi, K. Tominaga, Y. Yamamoto, T. Ueda, Prog. Theor. Phys. 105, 627 (2001). https://doi.org/10.1143/PTP.105.627

    Article  Google Scholar 

  49. T.T. Sun, E. Hiyama, H. Sagawa, H.J. Schulze, J. Meng, Phys. Rev. C 94, 064319 (2016). https://doi.org/10.1103/PhysRevC.94.064319

    Article  Google Scholar 

  50. T. Koike, J.P.S. Conf, Proc. 17, 033011 (2017). https://doi.org/10.7566/JPSCP.17.033011

  51. R. Shyam, K. Tsushima (2019). arxiv:1901.06090v1

  52. J. Yoshida, for the J-PARC E07 collaboration. Few-Body Syst. 63, 13 (2022). https://doi.org/10.1007/s00601-021-01716-y

Download references

Acknowledgements

The synchrotron radiation experiments in this study were performed at the BL47XU in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2019A1372 and 2020A1523). The authors thank K. Uesugi, A. Takeuchi, and M. Yasutake for their technical support during experiments. This work was supported by JSPS KAKENHI Grant Numbers JP16H02180, JP20H00155, and JP19H05147 (Grant-in-Aid for Scientific Research on Innovative Areas 6005). JY was supported by JSPS KAKENHI Grant Number JP18H05403 (Grant-in-Aid for Scientific Research on Innovative Areas 6005). MY was supported by a Grant-in-Aid for JSPS Fellows (JP20J00682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kasagi.

Additional information

Communicated by Klaus Peters.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasagi, A., Hayashi, K., Lin, P.M. et al. High-resolution measurement of hypernuclear events in a nuclear emulsion with hard X-ray microscopy. Eur. Phys. J. A 58, 190 (2022). https://doi.org/10.1140/epja/s10050-022-00830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00830-7

Navigation