Skip to main content
Log in

Commissioning of the 4\(\pi \,\gamma \)-summing array HECTOR at CASPAR: measurements of \(^{27}\text {Al}\)\((p,\gamma )\) \(^{28}\text {Si}\) resonances 4850 feet underground

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The High EffiCiency TOtal absorption spectrometeR (HECTOR) is a \(4\pi \) \(\gamma \)-summing detector designed to measure capture cross sections. Here, we present the commissioning of HECTOR at the Compact Accelerator System for Performing Astrophysical Research (CASPAR) laboratory, which is located at the Sandford Underground Research Facility 4850 feet underground. With the underground environment drastically improving the signal-to-noise ratio of the detector, it is estimated HECTOR will be able to push cross-section measurements below a nanobarn. Details of the experimental setup are discussed along with the analysis of several resonance strengths measured for the \(^{27}\text {Al}\)\((p,\gamma )\) \(^{28}\text {Si}\) reaction between the lab energies 0.2–1.0 MeV. The measurements are in excellent agreement with those found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Results relevant to the discussion in the paper are included in appropriate figures and tables within the text. All experimental data is available upon request to the corresponding author.]

References

  1. M. Wiescher, F. Käppeler, K. Langanke, Annu. Rev. Astron. Astrophys. 50(1), 165 (2012). https://doi.org/10.1146/annurev-astro-081811-125543

    Article  ADS  Google Scholar 

  2. D. Bemmerer, F. Confortola, A. Lemut, R. Bonetti, C. Broggini, P. Corvisiero, H. Costantini, J. Cruz, A. Formicola, Z.S. Fülöp et al., Eur. Phys. J. A 24(2), 313 (2005). https://doi.org/10.1140/epja/i2004-10135-4

    Article  ADS  Google Scholar 

  3. W. Liu, Z. Li, J. He et al., Sci. China Phys. Mech. Astron. 59, 642001 (2016). https://doi.org/10.1007/s11433-016-5785-9

    Article  ADS  Google Scholar 

  4. T. Szücs, D. Bemmerer, D. Degering et al., Eur. Phys. J. A 55, 174 (2019). https://doi.org/10.1140/epja/i2019-12865-4

  5. D. Robertson, M. Couder, U. Greife, F. Strieder, M. Wiescher, EPJ Web Conf. 109, 09002 (2016). https://doi.org/10.1051/epjconf/201610909002

    Article  Google Scholar 

  6. StGobain Crystals (2016)

  7. C.S. Reingold, O. Olivas-Gomez, A. Simon, J. Arroyo, M. Chamberlain, J. Wurzer, A. Spyrou, F. Naqvi, A.C. Dombos, A. Palmisano et al., Eur. Phys. J. A 55(5), 77 (2019). https://doi.org/10.1140/epja/i2019-12748-8

    Article  ADS  Google Scholar 

  8. O. Olivas-Gomez, A. Simon, O. Gorton, J.E. Escher, E. Churchman, P. Millican, R. Kelmar, C.S. Reingold, A.M. Clark, N. Cooper et al., Phys. Rev. C 102, 055806 (2020). https://doi.org/10.1103/PhysRevC.102.055806

    Article  ADS  Google Scholar 

  9. R. Kelmar, A. Simon, O. Olivas-Gomez, P. Millican, C.S. Reingold, E. Churchman, A.M. Clark, S.L. Henderson, S.E. Kelly, D. Robertson et al., Phys. Rev. C 101, 015801 (2020). https://doi.org/10.1103/PhysRevC.101.015801

    Article  ADS  Google Scholar 

  10. A. Spyrou, H.W. Becker, A. Lagoyannis, S. Harissopulos, C. Rolfs, Phys. Rev. C 76, 015802 (2007). https://doi.org/10.1103/PhysRevC.76.015802

    Article  ADS  Google Scholar 

  11. H. Ohsumi, R. Gurriarán, P. Hubert, R. Arnold, C. Augier, J. Baker, A. Barabash, O. Bing, V. Brudanin, A. Caffrey et al., Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 482(3), 832 (2002). https://doi.org/10.1016/S0168-9002(01)01866-6

  12. C. Prokop, S. Liddick, B. Abromeit, A. Chemey, N. Larsen, S. Suchyta, J. Tompkins, Nucl. Instrum. Methods A 741, 163 (2014)

    Article  ADS  Google Scholar 

  13. XIA LLC. http://www.xia.com/DGF_Pixie-16.html (2016)

  14. C. Iliadis, Nuclear Physics of Stars (Wiley, New York, 2018), pp. 345–348. https://doi.org/10.1002/9783527692668.ch4

    Book  Google Scholar 

  15. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268(11–12), 1818 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  ADS  Google Scholar 

  16. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand et al., Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 835, 186 (2016). https://doi.org/10.1016/j.nima.2016.06.125

  17. C. Iliadis, T. Schange, C. Rolfs, U. Schroeder, E. Somorjai, H. Trautvetter, K. Wolke, P. Endt, S. Kikstra, A. Champagne et al., Nucl. Phys. A 512, 509 (1990)

    Article  ADS  Google Scholar 

  18. D. Powell, C. Iliadis, A. Champagne, S. Hale, V. Hansper, R. Surman, K. Veal, Nucl. Phys. A 644(4), 263 (1998). https://doi.org/10.1016/S0375-9474(98)00593-4

    Article  ADS  Google Scholar 

  19. A. Antilla, J. Keinonen, M. Hautala, I. Forsblom, Nucl. Instrum. Methods 147(3), 501 (1977). https://doi.org/10.1016/0029-554X(77)90393-7

    Article  ADS  Google Scholar 

  20. M. Meyer, I. Venter, D. Reitmann, Nucl. Phys. A 250(2), 235 (1975). https://doi.org/10.1016/0375-9474(75)90256-0

    Article  ADS  Google Scholar 

  21. National Nuclear Data Center. https://www.nndc.bnl.gov/ (2021)

  22. C. Angulo, M. Arnould, M. Rayet, P. Descouvemont, D. Baye, C. Leclercq-Willain, A. Coc, S. Barhoumi, P. Aguer, C. Rolfs et al., Nucl. Phys. A 656(1), 3 (1999). https://doi.org/10.1016/S0375-9474(99)00030-5

    Article  ADS  Google Scholar 

  23. P.M. Endt, Nucl. Phys. A 633, 1 (1998)

    Article  ADS  Google Scholar 

  24. S. Harissopulos, K.S.C. Chronidou, T. Paradellis, C. Rolfs, W. Schulte, H. Becker, Eur. Phys. J. A 9, 479 (2000)

    Article  ADS  Google Scholar 

  25. P. Lyons, J. Toevs, D. Sargood, Nucl. Phys. A 130(1), 1 (1969). https://doi.org/10.1016/0375-9474(69)90954-3

    Article  ADS  Google Scholar 

  26. J. Keinonen, M. Riihonen, A. Anttila, Physica Scripta 12(5), 280 (1975). https://doi.org/10.1088/0031-8949/12/5/005

    Article  ADS  Google Scholar 

  27. B. Paine, D. Sargood, Nucl. Phys. A 331(2), 389 (1979). https://doi.org/10.1016/0375-9474(79)90349-X

    Article  ADS  Google Scholar 

  28. J. Brenneisen, D. Grathwohl, M. Lickert, R. Ott, R. Höpke, J. Schmälzlin, B. Wildenthal, Z. Phys. A 352, 149 (1995)

    Article  ADS  Google Scholar 

  29. J. Keinonen, A. Anttila, Commentationes Physico-Mathematicae 46, 61 (1976)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (NSF) under Grants nos. PHY-1713857, PHY-2011890, PHY-1614442, and PHY-1913746, and the Sanford Underground Research Facility (SURF) under Award number DE-SC0020216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Olivas-Gomez.

Additional information

Communicated by Anu Kankainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivas-Gomez, O., Simon, A., Robertson, D. et al. Commissioning of the 4\(\pi \,\gamma \)-summing array HECTOR at CASPAR: measurements of \(^{27}\text {Al}\)\((p,\gamma )\) \(^{28}\text {Si}\) resonances 4850 feet underground. Eur. Phys. J. A 58, 57 (2022). https://doi.org/10.1140/epja/s10050-022-00711-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00711-z

Navigation