Skip to main content
Log in

Investigation of low-lying resonances in breakup of halo nuclei within the time-dependent approach

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We investigate the Coulomb breakup of \(^{11}\)Be halo nuclei on a heavy target (\(^{208}\)Pb) from intermediate (70 MeV/nucleon) to low energies (5 MeV/nucleon) within the non-perturbative semiclassical and quantum-quasiclassical time-dependent approaches. The convergence of the computational scheme is demonstrated in this energy range including n + \(^{10}\)Be low-lying resonances in different partial and spin states. We have found a considerable contribution of the \(5/2^{+}\) resonance (\(E_{r}\) = 1.23 MeV) to the breakup cross section at 30 MeV/nucleon and lower, while at higher energies, the resonant states \(3/2^{-}\) and \(3/2^{+}\) (with \(E_{r}\) = 2.78 and 3.3 MeV) make most visible contributions. The obtained results are in good agreement with experimental data available at 69 and 72 MeV/nucleon. Comparison with the existing theoretical calculations of other authors for 20 and 30 MeV/nucleon is also made. The developed computational scheme opens new possibilities in the investigation of the Coulomb, as well as nuclear, breakup of other halo nuclei on heavy and light targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository.

References

  1. Al-Khalili, An Introduction to Halo Nuclei, Lect. Notes Phys. 651, 77–112 (2004). https://doi.org/10.1007/978-3-540-44490-9_3

  2. I. Tanihata, J. Phys. G 22, 157 (1996). https://doi.org/10.1088/0954-3899/22/2/004

    Article  ADS  Google Scholar 

  3. S. Typel, G. Baur, Phys. Rev. C 50, 2104 (1994). https://doi.org/10.1103/PhysRevC.50.2104

    Article  ADS  Google Scholar 

  4. H. Esbensen, G.F. Bertsch, Nucl. Phys. A 600, 37 (1996). https://doi.org/10.1016/0375-9474(96)00006-1

    Article  ADS  Google Scholar 

  5. J.A. Tostevin, S. Rugmai, R.C. Johnson, Phys. Rev. C 57, 3225 (1998). https://doi.org/10.1103/PhysRevC.57.3225

    Article  ADS  Google Scholar 

  6. Y. Suzuki, R.G. Lovas, K. Yabana, K. Varga, Struct. React. Light Exotic Nuclei (2003). https://doi.org/10.1201/9780203168271

    Article  Google Scholar 

  7. M. Kamimura et al., Prog. Theor. Phys. Suppl. 89, 1 (1986). https://doi.org/10.1143/PTPS.89.1

    Article  ADS  Google Scholar 

  8. J.A. Tostevin, F.M. Nunes, I.J. Thompson, Phys. Rev. C 63, 024617 (2001). https://doi.org/10.1103/PhysRevC.63.024617

    Article  ADS  Google Scholar 

  9. A.M. Moro, J.A. Lay, J. Gomez Camacho, Phys. Lett. B 811, 135959 (2020). https://doi.org/10.1016/j.physletb.2020.135959

    Article  Google Scholar 

  10. D. Baye, P. Capel, G. Goldstein, Phys. Rev. Lett. 95, 082502 (2005). https://doi.org/10.1103/PhysRevLett.95.082502

    Article  ADS  Google Scholar 

  11. L. Moschini, P. Capel, Phys. Lett. B. 790, 367 (2019). https://doi.org/10.1016/j.physletb.2019.01.041

    Article  ADS  Google Scholar 

  12. T. Kido, K. Yabana, Y. Suzuki, Phys. Rev. C 50, R1276 (1994). https://doi.org/10.1103/PhysRevC.50.R1276

    Article  ADS  Google Scholar 

  13. H. Esbensen, G.F. Bertsch, C.A. Bertulani, Nucl. Phys. A 581, 107 (1995). https://doi.org/10.1016/0375-9474(94)00423-K

    Article  ADS  Google Scholar 

  14. T. Kido, K. Yabana, Y. Suzuki, Phys. Rev. C 53, 2296 (1996). https://doi.org/10.1103/PhysRevC.53.2296

    Article  ADS  Google Scholar 

  15. V.S. Melezhik, D. Baye, Phys. Rev. C 59, 3232 (1999). https://doi.org/10.1103/PhysRevC.59.3232

    Article  ADS  Google Scholar 

  16. P. Capel, D. Baye, V.S. Melezhik, Phys. Rev. C 68, 014612 (2003). https://doi.org/10.1103/PhysRevC.68.014612

    Article  ADS  Google Scholar 

  17. T. Nakamura et al., Phys. Lett. B 331, 296 (1994). https://doi.org/10.1016/S0370-2693(96)01690-5

    Article  ADS  Google Scholar 

  18. N. Fukuda et al., Phys. Rev. C 70, 054606 (2004). https://doi.org/10.1103/PhysRevC.70.054606

    Article  ADS  Google Scholar 

  19. M. Zadro, Phys. Rev. C 70, 044605 (2004). https://doi.org/10.1103/PhysRevC.70.044605

    Article  ADS  Google Scholar 

  20. R. de Diego et al., Phys. Rev. C 89, 064609 (2014). https://doi.org/10.1103/PhysRevC.89.064609

    Article  ADS  Google Scholar 

  21. B. Mukeru, M.L. Lekala, G.J. Rampho, J. Phys. G Nucl. Part. Phys. 42(8), 085110 (2015). https://doi.org/10.1088/0954-3899/42/8/085110

    Article  ADS  Google Scholar 

  22. P. Banerjee et al., Phys. Rev. C 65, 064602 (2002). https://doi.org/10.1103/PhysRevC.65.064602

    Article  ADS  Google Scholar 

  23. G. Goldstein, D. Baye, P. Capel, Phys. Rev. C 73, 024602 (2006). https://doi.org/10.1103/PhysRevC.73.024602

  24. J.S. Al-Khalili, J.A. Tostevin, J.M. Brooke, Phys. Rev. C 55, R1018 (1997). https://doi.org/10.1103/PhysRevC.55.R1018

  25. C.E. Aguiar, F. Zardi, A. Vitturi, Phys. Rev. C 56, 1511 (1997). https://doi.org/10.1103/PhysRevC.56.1511

  26. T. Fukui, K. Ogata, P. Capel, Phys. Rev. C 90, 034617 (2014). https://doi.org/10.1103/PhysRevC.90.034617

    Article  ADS  Google Scholar 

  27. C. Hebborn, P. Capel, Phys. Rev. C 98, 044610 (2018). https://doi.org/10.1103/PhysRevC.98.044610

    Article  ADS  Google Scholar 

  28. V.S. Melezhik, D. Baye, Phys. Rev. C 64, 054612 (2001). https://doi.org/10.1103/PhysRevC.64.054612

    Article  ADS  Google Scholar 

  29. V.S. Melezhik, in Atoms and Molecules in Strong External Fields. ed. by P. Schmelcher, W. Schweizer (Plenum, New York, 1998). https://doi.org/10.1007/b115474

  30. V.S. Melezhik, Phys. Lett. A 230, 203 (1997). https://doi.org/10.1016/S0375-9601(97)00250-8

    Article  ADS  Google Scholar 

  31. V.S. Melezhik, J.S. Cohen, C.-Y. Hu, Phys. Rev. A 69, 032709 (2004). https://doi.org/10.1103/PhysRevA.69.032709

    Article  ADS  Google Scholar 

  32. V.S. Melezhik, Phys. Rev. A 103, 053109 (2021). https://doi.org/10.1103/PhysRevA.103.053109

    Article  ADS  Google Scholar 

  33. P. Capel, G. Goldstein, D. Baye, Phys. Rev. C 70, 064605 (2004). https://doi.org/10.1103/PhysRevC.70.064605

    Article  ADS  Google Scholar 

  34. S.N. Ershov, J.S. Vaagen, M.V. Zhukov, Phys. Atom. Nucl. 77(8), 989 (2014). https://doi.org/10.1134/S1063778814070072

    Article  ADS  Google Scholar 

  35. National Nuclear Data Center. https://www.nndc.bnl.gov/

  36. V.S. Melezhik, Hyperfine Interact. 101–102, 365 (1996). https://doi.org/10.1007/BF02227645

    Article  ADS  Google Scholar 

  37. V.S. Melezhik, C.-Y. Hu, Phys. Rev. Lett. 90, 083202 (2003). https://doi.org/10.1103/PhysRevLett.90.083202

    Article  ADS  Google Scholar 

  38. D. Baye, P. Capel, V.S. Melezhik, Nucl. Phys. A 722, 328 (2003). https://doi.org/10.1016/S0375-9474(03)01385-X

    Article  ADS  Google Scholar 

  39. F.F. Duan et al., Phys. Lett. B 811, 135942 (2020). https://doi.org/10.1016/j.physletb.2020.135942

    Article  Google Scholar 

  40. V.S. Melezhik, Discrete Contin. Models Appl. Comput. Sci. (2019). https://doi.org/10.22363/2658-4670-2019-27-4-378-385

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge valuable discussion with Prof. S. N. Ershov. The work was supported by the Grant of Ministry of Science and Higher Education of the Russian Federation No. 075-10-2020-117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniyar Janseitov.

Additional information

Communicated by A. Rios Huguet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valiolda, D., Janseitov, D. & Melezhik, V. Investigation of low-lying resonances in breakup of halo nuclei within the time-dependent approach. Eur. Phys. J. A 58, 34 (2022). https://doi.org/10.1140/epja/s10050-022-00684-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00684-z

Navigation