Skip to main content

Advertisement

Log in

Revisiting the former nuclear emulsion data for hypertriton

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We revisit previous measurements for the hypertriton binding energy with nuclear emulsion which were published in 1968 and 1973. Using Monte Carlo simulations, the systematic error of the hypertriton binding energy in emulsion measurements has been estimated to be approximately 28 keV. We corroborate the recent works that re-evaluate the hypertriton binding energy by using the former emulsion measurements in the present work, and the ambiguities and difficulties of the reevaluation are observed. Considering the need of new precise measurements with a well-controlled systematic error, we introduce a new approach by analyzing the existing nuclear emulsion data from the J-PARC E07 experiment, from which the binding energy of hypertriton could be determined, with both statistical and systematic errors, to be approximately 30 keV with 400 events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated or analyzed during this study are included in this published article.]

References

  1. M. Danysz, J. Pniewski, Lond. Edinburgh Dublin Philos. Magazine J. Sci. 44(350), 348 (1953). https://doi.org/10.1080/14786440308520318

    Article  Google Scholar 

  2. D. Davis, Nuclear Phys. A 754, 3 (2005). https://doi.org/10.1016/j.nuclphysa.2005.01.002.https://www.sciencedirect.com/science/article/pii/S0375947405000047

  3. O. Hashimoto, H. Tamura, Progress Part. Nuclear Phys. 57(2), 564 (2006). https://doi.org/10.1016/j.ppnp.2005.07.001.https://www.sciencedirect.com/science/article/pii/S0146641005000761

  4. A. Feliciello, T. Nagae, Rep. Prog. Phys. 78(9), 096301 (2015). https://doi.org/10.1088/0034-4885/78/9/096301

    Article  ADS  Google Scholar 

  5. C. Rappold, J. Phys: Conf. Ser. 668, 012025 (2016). https://doi.org/10.1088/1742-6596/668/1/012025

    Article  Google Scholar 

  6. G. Bohm et al., Nuclear Phys. B 4(6), 511 (1968). https://doi.org/10.1016/0550-3213(68)90109-0.http://www.sciencedirect.com/science/article/pii/0550321368901090

  7. M. Jurič, G. Bohm, J. Klabuhn, U. Krecker, F. Wysotzki, G. Coremans-Bertrand, J. Sacton, G. Wilquet, T. Cantwell, F. Esmael, A. Montwill, D. Davis, D. Kiełczewska, T. Pniewski, T. Tymieniecka, J. Zakrzewski, Nuclear Phys. B 52(1), 1 (1973). https://doi.org/10.1016/0550-3213(73)90084-9. https://www.sciencedirect.com/science/article/pii/0550321373900849

  8. The STAR Collaboration, Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton (2019). https://doi.org/10.1038/s41567-020-0799-7.https://arxiv.org/abs/1904.10520v1

  9. Y.H. Leung. Hypernuclei and anti-hypernuclei production in heavy-ion collisions. https://indico.cern.ch/event/985652/contributions/4296086/attachments/2248875/3814733/sqm2021hypernucleiv7.pdf

  10. M. Rayet, R.H. Dalitz, Nuovo Cimento A 46, 786 (1966). https://doi.org/10.1007/BF02857527

    Article  ADS  Google Scholar 

  11. A. Pérez-Obiol, et al., Phys. Lett. B 811, 135916 (2020). https://doi.org/10.1016/j.physletb.2020.135916. http://www.sciencedirect.com/science/article/pii/S037026932030719X

  12. C. Rappold et al., Nuclear Phys. A 913, 170 (2013). https://doi.org/10.1016/j.nuclphysa.2013.05.019.https://www.sciencedirect.com/science/article/pii/S0375947413005940

  13. L. Adamczyk et al., Phys. Rev. C 97, 054909 (2018). https://doi.org/10.1103/PhysRevC.97.054909

    Article  ADS  Google Scholar 

  14. J. Chen et al., Physi. Rep. 760, 1 (2018). https://doi.org/10.1016/j.physrep.2018.07.002.https://www.sciencedirect.com/science/article/pii/S0370157318301753

  15. S. Acharya et al., Phys. Lett. B 797, 134905 (2019). https://doi.org/10.1016/j.physletb.2019.134905.https://www.sciencedirect.com/science/article/pii/S0370269319306276

  16. Y. Toyama, et al., Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018) (2019). https://doi.org/10.7566/jpscp.26.031018

  17. T.R. Saito et al., Nat. Rev. Phys. (2021). https://doi.org/10.1038/s42254-021-00371-w

    Article  Google Scholar 

  18. H. Asano, et al. \(^3_{\Lambda }{{\rm H}}\) and \(^4_{\Lambda }{{\rm H}}\) mesonic weak decay lifetime measurement with \(^{3,4}{{\rm He}}({{\rm K}}^{-},\pi ^{0})^{3,4}_{\Lambda }{{\rm H}}\) reaction. http://j-parc.jp/researcher/Hadron/en/pac_1901/pdf/P73_2019-06.pdf

  19. M. Agnello, et al. Direct measurement of the \(^3_{\Lambda }{{\rm H}}\) and \(^4_{\Lambda }{{\rm H}}\) lifetimes using the \(^{3,4}{{\rm He}}(\pi ^{-},{{\rm K}}^{0})^{3,4}_{\Lambda }{{\rm H}}\) reactions. http://j-parc.jp/researcher/Hadron/en/pac_1901/pdf/P74_2019-08.pdf

  20. P. Achenbach, et al., PoS Hadron2017, 207 (2018). https://doi.org/10.22323/1.310.0207. https://pos.sissa.it/310/207/pdf

  21. P.A. Zyla et al., Progress Theor. Exp. Phys. (2020). https://doi.org/10.1093/ptep/ptaa104

    Article  Google Scholar 

  22. W. Huang et al., Chin. Phys. C 41(3), 030002 (2017). https://doi.org/10.1088/1674-1137/41/3/030002

    Article  ADS  Google Scholar 

  23. M. Wang et al., Chin. Phys. C 41(3), 030003 (2017). https://doi.org/10.1088/1674-1137/41/3/030003

    Article  ADS  Google Scholar 

  24. P. Liu et al., Chin. Phys. C 43(12), 124001 (2019). https://doi.org/10.1088/1674-1137/43/12/124001

    Article  ADS  Google Scholar 

  25. A. Ariga et al., Nuclear emulsions (Springer International Publishing, Cham, 2020), pp. 383–438. https://doi.org/10.1007/978-3-030-35318-6_9

    Book  Google Scholar 

  26. W.H. Barkas, Pure& Applied Physics Series, I II, vol. 15. (Academic Press, Cambridge, 1963)

    Google Scholar 

  27. H.H. Heckman et al., Phys. Rev. 117, 544 (1960). https://doi.org/10.1103/PhysRev.117.544

    Article  ADS  Google Scholar 

  28. G. Bohm et al., Nuclear Phys. B 48(1), 1 (1972). https://doi.org/10.1016/0550-3213(72)90047-8.http://www.sciencedirect.com/science/article/pii/0550321372900478

  29. J. Mattauch et al., Nuclear Phys. 67(1), 73 (1965). https://doi.org/10.1016/0029-5582(65)90116-1.https://www.sciencedirect.com/science/article/pii/0029558265901161

  30. A. Wapstra, N. Gove, Atom. Data Nuclear Data Tables 9(4), 267 (1971). https://doi.org/10.1016/S0092-640X(09)80001-6.https://www.sciencedirect.com/science/article/pii/S0092640X09800016

  31. L. Huanling, H. Dingding, M. Yugang, Z. Liang, Sci. China Phys. Mech. Astronomy (2020). https://doi.org/10.1007/s11433-020-1552-2

    Article  Google Scholar 

  32. T.H. Shao, J.H. Chen, C.M. Ko, K.J. Sun, Z.B. Xu, Chin. Phys. C 44(11), 114001 (2020). https://doi.org/10.1088/1674-1137/abadf0

  33. B. Dönigus, Eur. Phys. J. A (2020). https://doi.org/10.1140/epja/s10050-020-00275-w

    Article  Google Scholar 

  34. K. Imai, K. Nakazawa, H. Tamura. J-PARC E07 experiment. Systematic Study of Double-Strangeness System with an Emulsion-Counter Hybrid Method. http://j-parc.jp/researcher/Hadron/en/pac_0606/pdf/p07-Nakazawa.pdf

Download references

Acknowledgements

We thank Professor K. Nakazawa of Gifu University for constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Liu.

Additional information

Communicated by Klaus Peters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, E., Kasagi, A., Ekawa, H. et al. Revisiting the former nuclear emulsion data for hypertriton. Eur. Phys. J. A 57, 327 (2021). https://doi.org/10.1140/epja/s10050-021-00649-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00649-8

Navigation