Skip to main content
Log in

Progress and opportunities in backward angle (u-channel) physics

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Backward angle (u-channel) scattering provides complementary information for studies of hadron spectroscopy and structure, but has been less comprehensively studied than the corresponding forward angle case. As a result, the physics of u-channel scattering poses a range of new experimental and theoretical opportunities and questions. We summarize recent progress in measuring and understanding high energy reactions with baryon charge exchange in the u-channel, as discussed in the first Backward angle (u-channel) Physics Workshop. In particular, we discuss backward angle measurements and their theoretical description via both hadronic models and the collinear factorization approach, and discuss planned future measurements of u-channel physics. Finally, we propose outstanding questions and challenges for u-channel physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This manuscript is a review-style article, which consists of ingredients from past experimental results and up-to-date theory interpretations. Regarding the past experimental results, these were previously published results, therefore no new dataset generated or analyzed involved for drafting this manuscript. Regarding the theory interpretations, the theoretical study doesn’t involve data generation or storage.]

Notes

  1. The nucleon electromagnetic form factors parameterized in terms of parton distribution functions, as in Ref. [28] can, in practice, be obtained equally by adjusting the cutoff mass \(\varLambda \) in the corresponding dipole form factor.

References

  1. W. Li, Ph.D Thesis, University of Regina (2017). arXiv:hep-ph/9901429

  2. K. Park et al., CLAS Collaboration, Phys. Lett. B 780, 340 (2018)

  3. W.B. Li et al., Jefferson Lab F\(\pi \). Phys. Rev. Lett. 123, 182501 (2019)

    Article  ADS  Google Scholar 

  4. S. Diehl et al., CLAS Collaboration, Phys. Rev. Lett. 125, 182001 (2020)

  5. W.B. Li, G.M. Huber, J. Stevens et al., JLab 12 GeV Experiment E12-20-007. https://www.jlab.org/exp_prog/proposals/20/PR12-20-007_Proposal.pdf

  6. G.M. Huber, D. Gaskell, T. Horn et al., JLab 12 GeV Experiment E12-19-006. https://www.jlab.org/exp_prog/proposals/19/E12-19-006.pdf

  7. T. Horn, G.M. Huber, P. Markowitz et al., JLab 12 GeV Experiment E12-09-011. https://www.jlab.org/exp_prog/proposals/09/PR12-09-011.pdf

  8. R. Abdul Khalek et al. (2021). arXiv:2103.05419 [physics.ins-det]

  9. D.P. Anderle et al. (2021). arXiv:2102.09222

  10. B. Singh et al., \(\overline{\rm P}\)ANDA. Eur. Phys. J. A 51, 107 (2015)

    Article  ADS  Google Scholar 

  11. B. Singh et al., \(\overline{\rm P}\)ANDA. Phys. Rev. D 95, 032003 (2017)

    Article  ADS  Google Scholar 

  12. B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Reports 940, 1 (2021)

    Article  ADS  Google Scholar 

  13. T. Arens, O. Nachtmann, M. Diehl, P.V. Landshoff, Z. Phys. C 74, 651 (1997). arXiv:hep-ph/9605376

  14. M. Guidal, J.M. Laget, M. Vanderhaeghen, Phys. Lett. B 400, 6 (1997)

    Article  ADS  Google Scholar 

  15. J.M. Laget, Prog. Part. Nucl. Phys. 111, 103737 (2020)

    Article  Google Scholar 

  16. J.M. Laget, Phys. Rev. C 104, 025202 (2021)

    Article  ADS  Google Scholar 

  17. T. Horn et al., Phys. Rev. Lett. 97, 192001 (2006)

    Article  ADS  Google Scholar 

  18. H.P. Blok et al., Phys. Rev. C 78, 045202 (2008)

    Article  ADS  Google Scholar 

  19. V.L. Chernyak, A.A. Ogloblin, I.R. Zhitnitsky, Zeitschrift für Physik C Particles and Fields 42, 583 (1989)

    Article  Google Scholar 

  20. I. King, C. Sachrajda, Nucl. Phys. B 279, 785 (1987)

    Article  ADS  Google Scholar 

  21. L. Morand, D. Doré et al., CLAS Collaboration, Eur. Phys. J. A Hadrons Nucl. 24, 445 (2005)

  22. R.L. Anderson, D. Gustavson, J. Johnson, I. Overman, D. Ritson, B.H. Wiik, Phys. Rev. Lett. 23, 721 (1969)

    Article  ADS  Google Scholar 

  23. J.L. Anderson, J.W. Ryon, Phys. Rev. 181, 1765 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  24. A.M. Boyarski, F. Bulos, W. Busza, R. Diebold, S.D. Ecklund, G.E. Fischer, J.R. Rees, B. Richter, Phys. Rev. Lett. 20, 300 (1968)

    Article  ADS  Google Scholar 

  25. J. Laget, Phys. Lett. B 685, 146 (2010)

    Article  ADS  Google Scholar 

  26. J. Laget, Phys. Lett. B 695, 199 (2011)

    Article  ADS  Google Scholar 

  27. J.M. Laget, Phys. Rev. D 70, 054023 (2004)

    Article  ADS  Google Scholar 

  28. M. Guidal, M.V. Polyakov, A.V. Radyushkin, M. Vanderhaeghen, Phys. Rev. D 72, 054013 (2005)

    Article  ADS  Google Scholar 

  29. B.G. Yu, K.J. Kong, Phys. Rev. D 99, 014031 (2019)

    Article  ADS  Google Scholar 

  30. M.M. Kaskulov, U. Mosel, Phys. Rev. C 81, 045202 (2010)

    Article  ADS  Google Scholar 

  31. T.K. Choi, K.J. Kong, B.G. Yu, J. Korean Phys. Soc. 67, 1089 (2015)

    Article  ADS  Google Scholar 

  32. B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 91, 094006 (2015)

    Article  ADS  Google Scholar 

  33. F. Gross, D.O. Riska, Phys. Rev. C 36, 1928 (1987)

    Article  ADS  Google Scholar 

  34. A. Martin, R. Roberts, W. Stirling, R. Thorne, Phys. Lett. B 531, 216 (2002)

    Article  ADS  Google Scholar 

  35. B.G. Yu, T.K. Choi, K.J. Kong, J. Phys. G: Nucl. Part. Phys. 46, 075005 (2019)

    Article  ADS  Google Scholar 

  36. R.T. Deck, Phys. Rev. Lett. 13, 169 (1964)

    Article  ADS  Google Scholar 

  37. J. Pumplin, Phys. Rev. D 2, 1859 (1970)

    Article  ADS  Google Scholar 

  38. Ł. Bibrzycki, P. Bydžovský, R. Kamiński, A.P. Szczepaniak, Phys. Lett. B 789, 287 (2019). arXiv:1809.06123

  39. R.L. Workman, R.A. Arndt, W.J. Briscoe, M.W. Paris, I.I. Strakovsky, Phys. Rev. C 86, 035202 (2012). (1204.2277)

    Article  ADS  Google Scholar 

  40. V. Mathieu, I.V. Danilkin, C. Fernández-Ramírez, M.R. Pennington, D. Schott, A.P. Szczepaniak, G. Fox, Phys. Rev. D 92, 074004 (2015). (1506.01764)

    Article  ADS  Google Scholar 

  41. X. Ji, Phys. Rev. Lett. 78, 610 (1997)

    Article  ADS  Google Scholar 

  42. X. Ji, Annu. Rev. Nucl. Part. Sci. 54, 413 (2004)

    Article  ADS  Google Scholar 

  43. K. Kumerički, D. Mueller, Nucl. Phys. B 841, 1 (2010). arXiv:0904.0458

  44. V. Bertone, H. Dutrieux, C. Mezrag, H. Moutarde, P. Sznajder, Phys. Rev. D 103, 114019 (2021). arXiv:2104.03836

  45. F.X. Girod, R.A. Niyazov, H. Avakian, J. Ball, I. Bedlinskiy, V.D. Burkert, R. De Masi, L. Elouadrhiri, M. Garçon, M. Guidal et al., CLAS Collaboration. Phys. Rev. Lett. 100, 162002 (2008)

    Article  ADS  Google Scholar 

  46. C. Muñoz Camacho, A. Camsonne, M. Mazouz, C. Ferdi, G. Gavalian, E. Kuchina, M. Amarian, K.A. Aniol, M. Beaumel, H. Benaoum et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. Lett. 97, 262002 (2006)

  47. M. Defurne, M. Amaryan, K.A. Aniol, M. Beaumel, H. Benaoum, P. Bertin, M. Brossard, A. Camsonne, J.P. Chen, E. Chudakov et al., Jefferson Lab Hall A Collaboration, Phys. Rev. C 92, 055202 (2015)

  48. E. Voutier, AIP Conf. Proc. 1149, 161 (2009)

    Article  ADS  Google Scholar 

  49. D. Bhetuwal, J. Matter, H. Szumila-Vance, M.L. Kabir, D. Dutta, R. Ent, D. Abrams, Z. Ahmed, B. Aljawrneh, S. Alsalmi et al., Jefferson Lab Hall C Collaboration. Phys. Rev. Lett. 126, 082301 (2021)

  50. L. Frankfurt, V. Guzey, M. Strikman, Phys. Rept. 512, 255 (2012). arXiv:1106.2091

  51. P. Kroll, Few-Body Syst. 57, 1041 (2016)

    Article  ADS  Google Scholar 

  52. J.C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982 (1997)

    Article  ADS  Google Scholar 

  53. L. Frankfurt, P. Pobylitsa, M.V. Polyakov, M. Strikman, Phys. Rev. D 60, 014010 (1999)

    Article  ADS  Google Scholar 

  54. L. Frankfurt, M.V. Polyakov, M. Strikman, D. Zhalov, M. Zhalov, Exclusive Processes at High Momentum Transfer pp. 361–368 (2002)

  55. G.R. Farrar, H. Liu, L.L. Frankfurt, M.I. Strikman, Phys. Rev. Lett. 61, 686 (1988)

    Article  ADS  Google Scholar 

  56. B.K. Jennings, G.A. Miller, Phys. Rev. D 44, 692 (1991)

    Article  ADS  Google Scholar 

  57. P. Jain, B. Pire, J.P. Ralston, Phys. Rep. 271, 67 (1996)

    Article  ADS  Google Scholar 

  58. L.L. Frankfurt, M.V. Polyakov, M. Strikman, M. Vanderhaeghen, Phys. Rev. Lett. 84, 2589 (2000)

    Article  ADS  Google Scholar 

  59. P.V. Pobylitsa, M.V. Polyakov, M. Strikman, Phys. Rev. Lett. 87, 022001 (2001)

    Article  ADS  Google Scholar 

  60. B. Pire, L. Szymanowski, Phys. Rev. D 71, 111501 (2005)

    Article  ADS  Google Scholar 

  61. B. Pire, L. Szymanowski, Phys. Lett. B 622, 83 (2005)

    Article  ADS  Google Scholar 

  62. M. Lutz et al. (\(\overline{\rm P}\)ANDA) (2009). arXiv:0903.3905 [hep-ex]

  63. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  64. A. Schäfer, Phys. Lett. B 217, 545 (1989)

    Article  ADS  Google Scholar 

  65. B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, PoS LC2019, 012 (2019)

  66. J.P. Ralston, B. Pire, Phys. Rev. D 66, 111501 (2002)

    Article  ADS  Google Scholar 

  67. B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 84, 074014 (2011)

    Article  ADS  Google Scholar 

  68. B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 82, 094030 (2010)

    Article  ADS  Google Scholar 

  69. J. Lansberg, B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 85, 054021 (2012)

    Article  ADS  Google Scholar 

  70. J. Lansberg, B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 86, 114033 (2012). ([Erratum: Phys.Rev.D 87, 059902 (2013)])

    Article  ADS  Google Scholar 

  71. B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Lett. B 724, 99 (2013). ([Erratum: Phys.Lett.B 764, 335–335 (2017)])

    Article  ADS  Google Scholar 

  72. R.W. Clifft, J.B. Dainton, E. Gabathuler, L.S. Littenberg, R. Marshall, S.E. Rock, J.C. Thompson, D.L. Ward, G.R. Brookesb, Phys. Lett. B 72, 114 (1977)

    Article  ADS  Google Scholar 

  73. M. Battaglieri et al., CLAS Collaboration, Phys. Rev. Lett. 87, 172002 (2001)

  74. E. Anciant et al., The CLAS Collaboration, Phys. Rev. Lett. 85, 4682 (2000)

  75. B.G. Yu, H. Kim, K.J. Kong, Phys. Rev. D 95, 014020 (2017)

    Article  ADS  Google Scholar 

  76. H. Jones, M. Scadron, Ann. Phys. 81, 1 (1973)

    Article  ADS  Google Scholar 

  77. B.G. Yu, K.J. Kong, J. Phys. G: Nucl. Part. Phys. 47, 055106 (2020)

    Article  ADS  Google Scholar 

  78. L. Tiator, D. Drechsel, O. Hanstein, S. Kamalov, S. Yang, Nucl. Phys. A 689, 205 (2001)

    Article  ADS  Google Scholar 

  79. D. Barber, J. Dainton, L. Lee, R. Marshall, J. Thompson, D. Williams, T. Brodbeck, G. Frost, D. Newton, G. Patrick et al., Phys. Lett. B 98, 135 (1981)

    Article  ADS  Google Scholar 

  80. D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, Phys. Rev. D 80, 034030 (2009)

    Article  ADS  Google Scholar 

  81. B.G. Yu, K.J. Kong, Phys. Lett. B 769, 262 (2017)

    Article  ADS  Google Scholar 

  82. B.G. Yu, K.J. Kong, Phys. Part. Nucl. Lett. 15, 438 (2018)

    Article  Google Scholar 

  83. P.D.B. Collins, P.J. Kearney, Zeitschrift für Physik C Particles and Fields 22, 277 (1984)

    Article  ADS  Google Scholar 

  84. K. Kumericki, S. Liuti, H. Moutarde, Eur. Phys. J. A 52, 157 (2016)

    Article  ADS  Google Scholar 

  85. E.R. Berger, M. Diehl, B. Pire, Eur. Phys. J. C 23, 675 (2002)

    Article  ADS  Google Scholar 

  86. B. Pire, K. Semenov-Tian-Shansky, L. Szymanowski, Phys. Rev. D 95, 034021 (2017)

    Article  ADS  Google Scholar 

  87. J. Lansberg, B. Pire, L. Szymanowski, Nucl. Phys. A 782, 16 (2007)

    Article  ADS  Google Scholar 

  88. D. Mueller, B. Pire, L. Szymanowski, J. Wagner, Phys. Rev. D 86, 031502 (2012)

    Article  ADS  Google Scholar 

  89. C. Adolph et al., COMPASS. Phys. Lett. B 740, 303 (2015). arXiv:1408.4286

  90. L. Bibrzycki, C. Fernández-Ramírez, V. Mathieu, M. Mikhasenko, M. Albaladejo, A.N. Hiller Blin, A. Pilloni, A.P. Szczepaniak (JPAC) (2021). arXiv:2104.10646

  91. T. Shimada, M. A.D., A. Irving, Nucl. Phys. B 142, 344 (1978)

  92. E. Klempt, A. Zaitsev, Phys. Rep. 454, 1 (2007)

    Article  ADS  Google Scholar 

  93. A. Rodas, A. Pilloni, M. Albaladejo, C. Fernández-Ramírez, A. Jackura, V. Mathieu, M. Mikhasenko, J. Nys, V. Pauk, B. Ketzer et al., Joint Physics Analysis Center. Phys. Rev. Lett. 122, 042002 (2019)

    Article  ADS  Google Scholar 

  94. R. Dolen, D. Horn, C. Schmid, Phys. Rev. 166, 1768 (1968)

    Article  ADS  Google Scholar 

  95. S. Adhikari et al., Nuclear instruments and methods in physics research section a: accelerators. Spectrom. Detect. Assoc. Equip. 987, 164807 (2021)

    Article  Google Scholar 

  96. D. Tompkins, R. Anderson, B. Gittelman, J. Litt, B.H. Wiik, D. Yount, A. Minten, Phys. Rev. Lett. 23, 725 (1969)

    Article  ADS  Google Scholar 

  97. R. Anderson, D. Gustavson, J. Johnson, D. Ritson, B.H. Wiik, W.G. Jones, D. Kreinick, F. Murphy, R. Weinstein, Phys. Rev. D 1, 27 (1970)

    Article  ADS  Google Scholar 

  98. M.C. Kunkel et al., CLAS Collaboration. Phys. Rev. C 98, 015207 (2018)

  99. S. Klein, P. Steinberg (2020). arXiv:2005.01872 [nucl-ex]

  100. A. Baltz, Phys. Rept. 458, 1 (2008)

    Article  ADS  Google Scholar 

  101. S.R. Klein, H. Mäntysaari, Nat. Rev. Phys. 1, 662 (2019)

    Article  Google Scholar 

  102. S.R. Klein (STAR), PoS DIS2018, 047 (2018)

  103. Z. Citron et al., CERN Yellow Rep. Monogr. 7, 1159 (2019)

    Google Scholar 

  104. S.R. Klein, J. Nystrand, Phys. Rev. Lett. 84, 2330 (2000). arXiv:hep-ph/9909237

  105. B.I. Abelev et al. (STAR), Phys. Rev. Lett. 102, 112301 (2009). arXiv:0812.1063

  106. S. Klein, J. Nystrand, Phys. Rev. C 60, 014903 (1999)

  107. S.R. Klein, Y.P. Xie, Phys. Rev. C 100, 024620 (2019)

    Article  ADS  Google Scholar 

  108. S.R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, J. Butterworth, Comput. Phys. Commun. 212, 258 (2017)

    Article  ADS  Google Scholar 

  109. Y. Shi, C. Yang, Q. Yang (STAR), JINST 15, C09021 (2020)

  110. M. Lomnitz, S. Klein, Phys. Rev. C 99, 015203 (2019)

    Article  ADS  Google Scholar 

  111. F.D. Aaron et al. (H1), JHEP 05, 032 (2010)

  112. A. Accardi et al., Eur. Phys. J. A 52, 268 (2016)

    Article  ADS  Google Scholar 

  113. E. Aschenauer, A. Kiselev, R. Petti, T. Ullrich, Electron-Ion Collider Detector Requirements and R&D Handbook (2019)

  114. Particle Data Group, P.A. Zyla et al., Progress of Theoretical and Experimental Physics 2020, 083C01 (2020)

Download references

Acknowledgements

We thank the Jefferson Science Associates (JSA) Initiatives Fund Program and the Jefferson Lab for sponsoring the Backward angle (u-channel) Physics Workshop. RJP was supported by Taiwanese MoST Grant No. 109-2112-M-009-006-MY3 and Taiwanese MoST Grant No. 109-2811-M-009-516. SK and AS were supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE- AC02–05CH11231. JRS and WBL are supported by the U.S. Department of Energy, Office of Science, Early Career Award contract DE-SC0018224. WBL was supported as a postdoctoral fellow from the Jefferson Lab Electron-Ion Collider Center. WBL also acknowledges the financial support from Jefferson Science Associates through the Post-Doctoral Award. GMH and SJDK are supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), SAPIN-2021–00026. LS is supported by grant 2019/33/B/ST2/02588 of the National Science Center in Poland. B-G Yu was supported by the National Research Foundation of Korea grant NRF-2017R1A2B4010117. ŁB acknowledges the financial support and hospitality of the Theory Center at Jefferson Lab and Indiana University. ŁB was also supported by the Polish Science Center (NCN) grant 2018/29/B/ST2/02576. VM is a Serra Húnter fellow and acknowledges support from the Spanish national Grant No. PID2019–106080 GB-C21 and PID2020-118758GB-I00. The work of KS is supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”. This project is also co-financed by the Polish-French collaboration agreements Polonium, by the Polish National Agency for Academic Exchange and COPIN-IN2P3 and by the European Union’s Horizon 2020 research and innovation program under grant agreement 824093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. B. Li.

Additional information

Communicated by Klaus Peters.

Appendix A: Missing mass reconstruction technique

Appendix A: Missing mass reconstruction technique

Fig. 27
figure 27

Example reconstructed missing mass (\(m_{miss}\)) distribution for \(ep\rightarrow e^{\prime } p^{\prime } X\) at \(Q^2 = 2.45\) GeV\(^2\) (blue points) from Hall C of JLab [1, 3]. The simulated distributions for \(\rho \) (blue), \(\omega \) (red) and \(\pi \pi \) (green) are used for the reaction channel separation

The missing mass \(m_{miss}\) for a meson X (\(X = \pi _0\), \(\omega \), etc.) production interaction \(^1\)H\((e, e^{\prime }p)X\):

$$\begin{aligned} e (p_e) + p\,(p_p) \rightarrow e\,(p_{e^{\prime }})+p (p_{p^\prime }) + X. \end{aligned}$$
(A.1)

is calculated as:

$$\begin{aligned} \begin{aligned} m_{miss}&\!=\! \big \{\left( E_{e} \!+\! m_{p} \!-\! E_{e'} \!-\! E_{p'}\right) ^{2} \!-\! \left( \mathbf {p}_{e} \!-\! \mathbf {p}_{e'} \!-\! \mathbf {p}_{p'}\right) ^{2} \big \} ^{1/2} \end{aligned} \end{aligned}$$
(A.2)

For instance, in the case of \(\omega \) electroproduction, the \(\omega \) events sit on a broad background, shown in reconstructed missing mass spectrum for \(ep\rightarrow e^{\prime } p X\) in Fig. 27. The final state particle X could be: \(\omega \), \(\rho \) or non-resonant \(\pi \pi \). Various quality control criteria were introduced to validate the background subtraction procedure, as described in Ref. [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayoso, C.A., Bibrzycki, Ł., Diehl, S. et al. Progress and opportunities in backward angle (u-channel) physics. Eur. Phys. J. A 57, 342 (2021). https://doi.org/10.1140/epja/s10050-021-00625-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00625-2

Navigation