Skip to main content

Advertisement

Log in

Normalizing the enhanced generalized superfluid model of nuclear level density

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A normalization procedure has been applied to improve the descriptive and predictive power of the enhanced generalized superfluid (EGS) model for the nuclear level density (NLD). In this procedure, the EGS model is normalized based on the experimental average level spacing at the neutron binding energy \(D_0\) and the cumulative number of experimental discrete levels in the low-energy region N(E). The values of normalization parameters are determined by systematically analyzing a set of 288 nuclei from \(^{25}\)Mg to \(^{251}\)Cf, whose experimental \(D_0\) and N(E) data are available. The systematical analysis permits to determine the values of the normalization parameters for any nucleus. The descriptive and predictive power of the normalized EGS (NEGS) model are demonstrated by making the comparison of the NEGS NLDs with the experimental NLD data of 70 nuclei obtained from the Oslo method. The results obtained show that the NEGS model describes reasonably well almost all the experimental NLDs and should be better used in the reaction codes than the conventional EGS, in particular for nuclei whose experimental NLDs are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical work. All data generated in this work are contained in this published article.]

References

  1. H.A. Bethe, Phys. Rev. 50, 332 (1936)

    Article  ADS  Google Scholar 

  2. T. Rauscher, F.K. Thielemann, K.L. Kratz, Phys. Rev. C 56, 1613 (1997)

    Article  ADS  Google Scholar 

  3. T. Rauscher, F.K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000)

    Article  ADS  Google Scholar 

  4. T. Ericson, Adv. Phys. 9, 425 (1960)

    Article  ADS  Google Scholar 

  5. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  6. M. Herman, R. Capote, B.V. Carlson, P. Oblozinsky, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108, 2655 (2007)

    Article  ADS  Google Scholar 

  7. P. Demetriou, S. Goriely, Nucl. Phys. A 695, 95 (2001)

    Article  ADS  Google Scholar 

  8. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

    Article  ADS  Google Scholar 

  9. S. Goriely, S. Hilaire, A.J. Koning, Phys. Rev. C 78, 064307 (2008)

    Article  ADS  Google Scholar 

  10. Y. Alhassid, B.W. Bush, Nucl. Phys. A 549, 43 (1992)

    Article  ADS  Google Scholar 

  11. Y. Alhassid, B.W. Bush, Nucl. Phys. A 565, 399 (1993)

    Article  ADS  Google Scholar 

  12. B.K. Agrawal, A. Ansari, Nucl. Phys. A 567, 1 (1994)

    Article  ADS  Google Scholar 

  13. B.K. Agrawal, A. Ansari, Nucl. Phys. A 576, 189 (1994)

    Article  ADS  Google Scholar 

  14. B. Lauritzen, P. Arve, G.F. Bertsch, Phys. Rev. Lett. 61, 2835 (1988)

    Article  ADS  Google Scholar 

  15. G. Puddu, P.F. Bortignon, R.A. Broglia, Ann. Phys. 206, 409 (1991)

    Article  ADS  Google Scholar 

  16. B.K. Agrawal, P.K. Sahu, Phys. Lett. B 351, 1 (1995)

    Article  ADS  Google Scholar 

  17. B.K. Agrawal, A. Ansari, Nucl. Phys. A 640, 362 (1998)

    Article  ADS  Google Scholar 

  18. B.K. Agrawal, A. Ansari, Phys. Lett. B 421, 13 (1998)

    Article  ADS  Google Scholar 

  19. Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 83, 4265 (1999)

    Article  ADS  Google Scholar 

  20. Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 99, 162504 (2007)

    Article  ADS  Google Scholar 

  21. M. Bonett-Matiz, A. Mukherjee, Y. Alhassid, Phys. Rev. C 88, 011302 (2013). ((R))

    Article  ADS  Google Scholar 

  22. Y. Alhassid, M. Bonett-Matiz, S. Liu, H. Nakada, Phys. Rev. C 92, 024307 (2015)

    Article  ADS  Google Scholar 

  23. C. Ozen, Y. Alhassid, H. Nakada, Phys. Rev. C 91, 034329 (2015)

  24. C. Ozen, Y. Alhassid, H. Nakada, Phys. Rev. Lett. 110, 042502 (2013)

    Article  ADS  Google Scholar 

  25. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1965)

    Article  ADS  Google Scholar 

  26. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979)

    Google Scholar 

  27. A.V. Ignatyuk, J.L. Weil, S. Raman, S. Kahane, Phys. Rev. C 47, 1504 (1993)

  28. A. D’Arrigo, G. Giardina, M. Herman, A.V. Ignatyuk, A. Taccone, J. Phys. G Nucl. Part. Phys. 20, 365 (1994)

    Article  ADS  Google Scholar 

  29. N. Quang Hung, N. Dinh-Dang, L.T. Quynh Huong, Phys. Rev. Lett. 118, 022502 (2017)

    Article  ADS  Google Scholar 

  30. N. Quang Hung, N. Dinh Dang, L.G. Moretto, Rep. Prog. Phys. 82, 056301 (2019)

    Article  ADS  Google Scholar 

  31. N. Quang Hung, N. Dinh Dang, L. Tan Phuc, N. Ngoc Anh, T. Dong Xuan, T.V. Nhan Hao, Phys. Lett. B 811, 135858 (2020)

    Article  Google Scholar 

  32. T. von Egidy, D. Bucurescu, Phys. Rev. C 72, 044311 (2005)

    Article  ADS  Google Scholar 

  33. R. Capote et al., Nucl. Data Sheets 110, 3107–3214 (2009)

    Article  ADS  Google Scholar 

  34. A. Schiller, L. Bergholt, M. Guttormsen, E. Melby, J. Rekstad, S. Siem, Nucl. Instrum. Methods Phys. Res. Sect. A 447, 498 (2000)

    Article  ADS  Google Scholar 

  35. https://www.mn.uio.no/fysikk/english/research/about/infrastructure/ocl/nuclear-physics-research/compilation/. Accessed 23 Sept 2021

  36. A.C. Larsen, M. Guttormsen, M. Krtička, E. Běták, A. Bürger, A. Görgen, H.T. Nyhus, J. Rekstad, A. Schiller, S. Siem, H.K. Toft, G.M. Tveten, A.V. Voinov, K. Wikan, Phys. Rev. C 83, 034315 (2011)

    Article  ADS  Google Scholar 

  37. A. Voinov, S.M. Grimes, C.R. Brune, M. Guttormsen, A.C. Larsen, T.N. Massey, A. Schiller, Phys. Rev. C 81, 024319 (2010)

    Article  ADS  Google Scholar 

  38. M. Guttormsen, A.C. Larsen, A. Görgen, T. Renstrøm, S. Siem, T.G. Tornyi, G.M. Tveten, Phys. Rev. Lett. 116, 012502 (2016)

    Article  ADS  Google Scholar 

  39. S. Goriely, Nucl. Phys. A 605, 28–60 (1996)

    Article  ADS  Google Scholar 

  40. S. Hilaire, S. Goriely, Nucl. Phys. A 779, 63–81 (2006)

    Article  ADS  Google Scholar 

  41. https://www-nds.iaea.org/RIPL-3/. Accessed 23 Sept 2021

  42. G. Maino, E. Menapace, A. Ventura, Nouvo Cimeto A 57, 427 (1980)

    Article  ADS  Google Scholar 

  43. G. Maino, M. Vaccari, A. Ventura, Comput. Phys. Commun. 29, 375 (1983)

    Article  ADS  Google Scholar 

  44. M.I. Svirin, Phys. Part. Nucl. 37, 475 (2006)

    Article  Google Scholar 

  45. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Yad. Fiz. 29, 875 (1979)

    Google Scholar 

  46. A.V. Ignatyuk, M.G. Itkis, V.N. Okolovich et al., Yad. Fiz. 21, 1185 (1975)

    Google Scholar 

  47. N.J. Bishop, I. Halpern, R.W. Shaw, R. Vandenbosch, Nucl. Phys. A 198, 161 (1972)

    Article  ADS  Google Scholar 

  48. W.D. Myers, W.J. Swiatecki, Ark. Fizik. 36, 343 (1967)

    Google Scholar 

  49. https://www.nndc.bnl.gov/ensdf/. Accessed 23 Sept 2021

  50. M. Herman, et al, INDC(NDS) 0603 (2015)

Download references

Acknowledgements

This work was funded by the Ministry of Science and Technology (MOST) of Vietnam under the Program of Development in Physics (Grant No. DTDLCN.02/19) and the National Foundation for Science and Technology Development (NAFOSTED) of Vietnam (Grant No. 103.04-2019.371).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vu Duc Cong or Nguyen Quang Hung.

Additional information

Communicated by Jerome Margueron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, V.D., Xuan, T.D., Hai, N.X. et al. Normalizing the enhanced generalized superfluid model of nuclear level density. Eur. Phys. J. A 57, 304 (2021). https://doi.org/10.1140/epja/s10050-021-00615-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00615-4

Navigation