Skip to main content
Log in

Systematics of alpha decay half-lives within the position-dependent mass formalism

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this paper, we present a new study about \(\alpha \) decay process in the framework of the quantum concept, namely: the position dependent mass formalism. Such a study allowed us to obtain a new generalized formula for \(\alpha \) decay half-lives which enables us to rebuild the majority of the formulas existing in the literature. Moreover, from this generalized formula, we derived two new practical ones. We have tested these two latter on 397 nuclei (\(52<Z<118\)). By comparing our obtained results with those from the majority of semi-empirical formulas in the literature, it comes out that one of these two new proposed formulas is the most precise one inasmuch as it presents the lowest r.m.s deviation in respect to the experimental data particularly for even–even nuclei. Based on this new formula, we make predictions for some super-heavy nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All final data obtained in this study are contained in this published article.]

References

  1. H. Geiger, J.M. Nutall, Philos. Mag. 22, 613 (1911)

    Article  Google Scholar 

  2. G. Gamow, Z. Phys. 51, 204 (1928)

    Article  ADS  Google Scholar 

  3. E.U. Condon, R.W. Gurney, Nature 122, 439 (1928)

    Article  ADS  Google Scholar 

  4. G. Royer, B. Remaud, J. Phys. G Nucl. Part. Phys. 8, L159 (1982)

    Article  ADS  Google Scholar 

  5. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Int. J. Mod. Phys. E 21, 1250022 (2012)

    Article  ADS  Google Scholar 

  6. K.P. Santhosh, S. Sabina, R.K. Biju, Nucl. Phys. A 825, 159 (2009)

    Article  ADS  Google Scholar 

  7. A. Sobiczewski, Z. Patyk, S. Cwiok, Phys. Lett. B 224, 1 (1989)

    Article  ADS  Google Scholar 

  8. Y.Z. Wang, Z.Y. Li, G.L. Yu, Z.Y. Hou, J. Phys. G Nucl. Part. Phys. 41, 055102 (2014)

    Article  ADS  Google Scholar 

  9. Y.Z. Wang, J.Z. Gu, Z.Y. Hou, Phys. Rev. C 89, 047301 (2014)

    Article  ADS  Google Scholar 

  10. C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, Phys. Rev. Lett. 103, 072501 (2009)

    Article  ADS  Google Scholar 

  11. Y.Z. Wang, J.Z. Gu, Z.Y. Hou, Phys. Rev. C 89, 047301 (2014)

    Article  ADS  Google Scholar 

  12. D.N. Poenaru, R.A. Gherghescu, I.H. Plonski, J. Phys. G Nucl. Part. Phys. 32, 1223 (2006)

    Article  ADS  Google Scholar 

  13. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. C 83, 014601 (2011)

    Article  ADS  Google Scholar 

  14. D.J. BenDaniel, C.B. Duke, Phys. Rev. 152, 683 (1966)

    Article  ADS  Google Scholar 

  15. T. Gora, F. Williams, Phys. Rev. 177, 1179 (1969)

    Article  ADS  Google Scholar 

  16. G. Bastard, Phys. Rev. B 24, 5693 (1981)

    Article  ADS  Google Scholar 

  17. Q.-G. Zhu, H. Kroemer, Phys. Rev. B 27, 3519 (1983)

  18. L.I. Serra, E. Lipparini, Europhys. Lett. 40, 667 (1997)

    Article  ADS  Google Scholar 

  19. A. Puente, L.I. Serra, M. Casas, Z. Phys. D 31, 283 (1994)

    Article  ADS  Google Scholar 

  20. T. Niksic, D. Vretenar, P. Ring, Prog. Part. Nucl. Phys. 55, 519 (2011)

    Article  ADS  Google Scholar 

  21. I. Boztosun, D. Bonatsos, I. Inci, Phys. Rev. C 77, 044302 (2008)

    Article  ADS  Google Scholar 

  22. D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Phys. Rev. C 83, 044321 (2011)

    Article  ADS  Google Scholar 

  23. M. Chabab, A. Lahbas, M. Oulne, Phys. Rev. C 91, 064307 (2015)

    Article  ADS  Google Scholar 

  24. O. von Roos, Phys. Rev. B 27, 7547 (1983)

    Article  ADS  Google Scholar 

  25. P. Buganu, M. Chabab, A. El Batoul, A. Lahbas, M. Oulne, Nucl. Phys. A 970, 272–290 (2018)

    Article  ADS  Google Scholar 

  26. M. Chabab, A. El Batoul, A. Lahbas, M. Oulne, J. Phys. G Nucl. Part. Phys. 43(12), 125107 (2016)

    Article  ADS  Google Scholar 

  27. M. Chabab, A. El Batoul, I. El-Ilali, A. Lahbas, M. Oulne, Eur. Phys. J. Plus 135(2), 201 (2020)

    Article  Google Scholar 

  28. M. Chabab, A. Lahbas, M. Oulne, Phys. Rev. C 91(6), 064307 (2015)

    Article  ADS  Google Scholar 

  29. L.I. Schiff, Quantum Mechanics, 3rd edn. (McGraw Hill, New York, 1968)

    Google Scholar 

  30. S. Flugge, Practical Quantum Mechanics, vol. 1 (Spring, Berlin, 1994)

    MATH  Google Scholar 

  31. R.W. Gurney et al., Nature (London) 122, 439 (1928)

    Article  ADS  Google Scholar 

  32. G. Royer, J. Phys. G 26, 1149 (2000)

    Article  ADS  Google Scholar 

  33. G. Royer, Nucl. Phys. A 848, 279 (2010)

    Article  ADS  Google Scholar 

  34. V.Y. Denisov, O.I. Davidovskaya, I.Y. Sedykh, Phys. Rev. C 85(1), 011303 (2012)

    Article  Google Scholar 

  35. C. Qi, D.S. Delion, R.J. Liotta, R. Wyss, Phys. Rev. C 92(1), 014602 (2015)

    Article  Google Scholar 

  36. D.T. Akrawy, D.N. Poenaru, J. Phys. G Nucl. Part. Phys. 44, 105105 (2017)

    Article  ADS  Google Scholar 

  37. V.Yu. Denisov, A.A. Khudenko, Phys. Rev. C 79, 054614 (2009)

  38. D.T. Akrawy, A.H. Ahmed, Int. J. Mod. Phys. E 27, 1850068 (2018)

    Article  ADS  Google Scholar 

  39. B.A. Brown, Phys. Rev. C 46, 811 (1992)

    Article  ADS  Google Scholar 

  40. I. Budaca, R. Budaca, I. Silisteanu, Nucl. Phys. A 951, 60 (2016)

    Article  ADS  Google Scholar 

  41. A. Sobiczewski, A. Parkhomenko, Prog. Part. Nucl. Phys. 58, 292 (2007)

    Article  ADS  Google Scholar 

  42. H.C. Manjunatha, L. Seenappa, K.N. Sridhar, Eur. Phys. J. Plus 134, 477 (2019)

    Article  Google Scholar 

  43. V.E. Viola, G.T. Seaborg, J. Inorg, Nucl. Chem. 28, 741 (1966)

    Article  Google Scholar 

  44. E. Shin, Y. Lim, C.H. Hyun, Y. Oh, Phys. Rev. C 94, 024320 (2016)

    Article  ADS  Google Scholar 

  45. J.M. Dong et al., Nucl. Phys. A 832, 198 (2010)

    Article  ADS  Google Scholar 

  46. M. Horoi, B.A. Brown, A. Sandulescu, J. Phys. G 30, 945 (2004)

    Article  ADS  Google Scholar 

  47. D. Ni, Z. Ren, T. Dong, C. Xu, Phys. Rev. C 78, 044310 (2008)

    Article  ADS  Google Scholar 

  48. D.T. Akrawy, H. Hassanabadi, Y. Qian, K.P. Santhosh, Nucl. Phys. A 983, 310 (2019)

    Article  ADS  Google Scholar 

  49. Dashty T. Akrawy, Ali H. Ahmed, Phys. Rev. C 100, 044618 (2019)

    Article  ADS  Google Scholar 

  50. Y. Qian, Z. Ren, Phys. Rev. C 85, 027306 (2012)

    Article  ADS  Google Scholar 

  51. J.-G. Deng, H.-F. Zhang, G. Royer, Phys. Rev. C 101, 034307 (2020)

    Article  ADS  Google Scholar 

  52. A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)

    Article  ADS  Google Scholar 

  53. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)

    Article  ADS  Google Scholar 

  54. N. Wang, M. Liu, X. Wu, J. Meng, Phys. Lett. B 734, 215 (2014)

    Article  ADS  Google Scholar 

  55. J.P. Cui, Y.L. Zhang, S. Zhang, Y.Z. Wang, Phys. Rev. C 97, 014316 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Moumene.

Additional information

Communicated by Chong Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Batoul, A., Moumene, I. & Oulne, M. Systematics of alpha decay half-lives within the position-dependent mass formalism. Eur. Phys. J. A 57, 254 (2021). https://doi.org/10.1140/epja/s10050-021-00561-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00561-1

Navigation