Skip to main content
Log in

Vector boson oscillator in the spiral dislocation spacetime

  • Regular Article –Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 20 August 2021

This article has been updated

Abstract

We consider a relativistic vector boson with Cornell type non-minimal coupling in the \(2+1\) dimensional spiral dislocation spacetime background and we determine the effects of spacetime background on the system in question. To acquire this, we solve the corresponding form of the vector boson equation and obtain solution function in terms of bi-confluent Heun function. We arrive at a spectrum in energy domain. Then, we discuss the effects of spacetime background on the dynamics of the vector boson under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: Our calculations do not include any numerical results.]

Change history

References

  1. T. W. B. Kibble, Topology of cosmic domains and strings, J. Phys. A, 19 (1976) 1387

    Article  ADS  MATH  Google Scholar 

  2. K. C. Valanis and V. P. Panoskaltsis, Material metric, connectivity and dislocations in continua, Acta Mech., 175 (2005) 77

    Article  MATH  Google Scholar 

  3. A. Vilenkin, Cosmic strings and domain walls, Phys. Rep., 121 (1985) 263

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. C. Furtado and F. Moraes, Landau levels in the presence of a screw dislocation, Europhys. Lett. 45 (1999) 279

    Article  ADS  Google Scholar 

  5. C. Furtado and F. Moraes, On the binding of electrons and holes to disclinations, Phys. Lett. A, 188 (1994) 394

    Article  ADS  Google Scholar 

  6. R.A. Puntigam, H.H. Soleng, Volterra distortions, spinning strings, and cosmic defects. Class. Quantum Grav. 14, 1129 (1997)

    Article  ADS  MATH  Google Scholar 

  7. A. de Padua, F. Parisio-Filho and F. Moraes, Geodesics around line defects in elastic solids, Phys. Lett. A, 238 (1998) 153

    Article  ADS  Google Scholar 

  8. J.G. de Assis, C. Furtado, V.B. Bezerra, Gravitational Berry’s quantum phase. Phys. Rev. D 62, 045003 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  9. G. DeMarques, C. Furtado, V. B. Bezerra and F. Moraes, Landau levels in the presence of topological defects, J. Phys. A Math. Gen., 34, 5945 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. P. Das, S. Pramanik and S. Ghosh, Particle on a torus knot: Constrained dynamics and semi-classical quantization in a magnetic field, Ann. Phys. (NY), 374 (2016) 67

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. AbarghoueiNejad, M. Dehghani and M. Monemzadeh, Spinning toroidal brane cosmology; A classical and quantum survey, Nucl. Phys. B, 950 (2020) 114

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Ivetić, S. Mignemi, A. Samsarov, Spectrum of the hydrogen atom in Snyder space in a semiclassical approximation. Phys. Rev. A 93, 032 (2016)

    Article  ADS  Google Scholar 

  13. J. Wang, Y.-X. Liu, Quantized scalar fields in curved spacetime background of thick brane. Class. Quantum Grav. 37, 145009 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Kleman,“Points, lignes, parois dans les fluides anisotropes et les solides cristallins”, (Editions de physique, France, (1977))

  15. M. O Katanaev and I. V Volovich, Theory of defects in solids and three-dimensional gravity, Ann. Phys. (NY), 216 (1992) 1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. J. Carvalho, C. Furtado, F. Moraes, Dirac oscillator interacting with a topological defect. Phys. Rev. A 84, 032 (2011)

    Article  ADS  Google Scholar 

  17. C. Furtado, V. B. Bezerra and F. Moraes, Quantum scattering by a magnetic flux screw dislocation, Phys. Lett. A, 289 (2001) 160

    Article  ADS  Google Scholar 

  18. J. Carvalho, A. M. Carvalho, E. Cavalcante and C. Furtado, Klein-Gordon oscillator in Kaluza-Klein theory, Eur. Phys. J. C, 76 (2016) 365

    Article  ADS  Google Scholar 

  19. S. Zare, H. Hassanabadi, M. de Montigny, Relativistic free fermions in an elastic medium with screw dislocations, Eur. Phys. J. Plus, 135 (2020) 122

    Article  Google Scholar 

  20. S. Zare, H. Hassanabadi, G. J. Rampho and A. N. Ikot, Spin and pseudospin symmetries of a relativistic fermion in an elastic medium with spiral dislocations, Eur. Phys. J. Plus, 135 (2020) 748

    Article  Google Scholar 

  21. S. Zare, H. Hassanabadi, M. de Montigny, Duffin-Kemmer-Petiau oscillator in the presence of a cosmic screw dislocation. Int. J. Mod. Phys. A 35, 2050195 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. H. Hassanabadi and M. de Montigny and M. Hosseinpour, Interaction of the magnetic quadrupole moment of a non-relativistic particle with an electric field in a rotating frame, Ann. Phys. (NY), 412 (2020) 168040

    Article  MathSciNet  MATH  Google Scholar 

  23. A.O. Barut, Excited states of zitterbewegung. Phys. Lett. B 237, 436 (1990)

    Article  ADS  Google Scholar 

  24. N. Ünal, A simple model of the classicalZitterbewegung: Photon wave function. Found. Phys. 27, 731 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Ünal, Path integral quantization of a spinning particle, Found. Phys., 28 (1998) 755

    Article  MathSciNet  Google Scholar 

  26. Y. Sucu and N. Ünal, Vector bosons in the expanding universe, Eur. Phys. J. C, 44 (2005) 287

    Article  ADS  Google Scholar 

  27. A. Guvendi, Y. Sucu, An interacting fermion-antifermion pair in the spacetime background generated by static cosmic string. Phys. Lett. B 811, 135 (2020)

    Article  MathSciNet  Google Scholar 

  28. A. Guvendi, R. Sahin and Y. Sucu, Exact solution of an exciton energy for a monolayer medium, Sci. Rep., 9 (2019) 1

    Article  Google Scholar 

  29. A. Guvendi, Relativistic Landau levels for a fermion-antifermion pair interacting through Dirac oscillator interaction. Eur. Phys. J. C 81, 1 (2021)

    Article  Google Scholar 

  30. A. Guvendi, R. Sahin and Y. Sucu, Binding energy and decaytime of exciton in dielectric medium, Eur. Phys. J. B, 94 (2021) 1

    Article  Google Scholar 

  31. A. Guvendi, S.G. Dogan, Relativistic Dynamics of Oppositely Charged Two Fermions Interacting with External Uniform Magnetic Field. Few-Body Sys. 62, 1 (2021)

    Article  ADS  Google Scholar 

  32. M. Moshinsky, A. Szczepaniak, The dirac oscillator. J. Phys. A Math. Gen. 22, L817 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  33. J. Bentez, R. P. MartínezyRomero, H. N. Núñez-Yépez, and A. L. Salas-Brito, Solution and hidden supersymmetry of a Dirac oscillator, Phys. Rev. Lett., 64 (1990) 1643

    Article  ADS  MathSciNet  Google Scholar 

  34. H. Hassanabadi, Z. Molaee and S. Zarrinkamar, DKP oscillator in the presence of magnetic field in (1+ 2)-dimensions for spin-zero and spin-one particles in noncommutative phase space, Eur. Phys. J. C, 72 (2012) 1

    Article  Google Scholar 

  35. M. Hosseinpour and H. Hassanabadi and M. de Montigny, The Dirac oscillator in a spinning cosmic string spacetime, Eur. Phys. J. C, 79 (2019) 1

    Article  Google Scholar 

  36. K. Bakke, C. Furtado, On the Klein-Gordon oscillator subject to a Coulomb-type potential. Ann. Phys. 355, 48 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. R.L.L. Vitória, C. Furtado, K. Bakke, Linear confinement of a scalar particle in a Gödel-type spacetime. Eur. Phys. J. C. 78, 1–5 (2018)

    Article  Google Scholar 

  38. F. Ahmed, The Dirac equation in a class of topologically trivial flat Gödel-type space-time backgrounds. Eur. Phys. J. C. 79, 1–10 (2019)

    ADS  Google Scholar 

  39. W. Zhi and L. Zheng-wen and L. Chao-yun and W. Ming-li, Relativistic quantum dynamics of a spinless particle in the Som–Raychaudhuri spacetime, Eur. Phys. J. Proc, 130, 1–8 (2015)

    Google Scholar 

  40. A.M. Ishkhanyan, Generalized Hypergeometric Solutions of the Heun Equation. Theor. Math. Phys. 202, 1–10 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. K. Takemura, Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial. J. Phys. A Math. Theor. 45, 085211 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. T. A. Ishkhanyan, and A. M. Ishkhanyan, Solutions of the bi-confluent Heun equation in terms of the Hermite functions, Ann. Phys. (NY), 383 (2017) 79-91

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for a thorough reading of our manuscript and for constructive suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Hassanabadi.

Additional information

Communicated by Giorgio Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guvendi, A., Zare, S. & Hassanabadi, H. Vector boson oscillator in the spiral dislocation spacetime. Eur. Phys. J. A 57, 192 (2021). https://doi.org/10.1140/epja/s10050-021-00514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00514-8

Navigation