Skip to main content

Advertisement

Log in

Mass yield distribution in the fission of \({}^{244}\)Cm induced by a spectrum of epi-cadmium to fast neutron

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The cumulative yields of various fission products within the mass range of 83–119 and 123–158 as well as independent yields of few fission products in the fission of \(^{\mathrm {244}}\hbox {Cm}\) induced by a spectrum of epi-cadmium to fast neutron have been measured by using an off-line \(\upgamma \)-ray spectrometric technique. Charge distribution correction was applied on the cumulative yields to obtain the post-neutron mass yields of fission products. The peak-to-valley (P/V) ratio, the full width at tenth maximum (FWTM) of light and heavy mass wing, the average light mass (\(<\!\hbox {A}_{\mathrm {L}}\!>\)) and heavy mass (\(<\!\hbox {A}_{\mathrm {H}}\!>\)) as well as the average number of neutrons (\(<\!\nu \!>\) ) were obtained from the mass yield distribution. The mass yield data in between the \(^{\mathrm {244}}\hbox {Cm(n, f)}\) and \(^{\mathrm {245}}\hbox {Cm}(\hbox {n}_{\mathrm {th}}\), f) reactions were compared to examine the role of small difference of excitation energy on P/V ratio and nuclear structure effect as well as on the standard I and standard II asymmetric modes of fission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: The data are given in the tabular form only. Besides these, there are no other data.]

References

  1. R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236, 683 (2006)

    Article  Google Scholar 

  2. S. Ganesan, Creation of Indian experimental benchmarks for thorium fuel cycle, IAEA Coordinated research project on “Evaluated Data for Thorium-Uranium Fuel Cycle”, Third Research Co-ordination Meeting, 30 January to 2 February 2006, Vienna, Austria, INDC (NDS) - 0494 (2006)

  3. L. Mathieu et al., Proportion for a very simple Thorium Molten Salt reactor, in Proceedings of the Global International Conference, Paper No. 428, Tsukuba, Japan, (2005)

  4. T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install. 2007, 97486 (2007)

    Article  Google Scholar 

  5. P.E. MacDonald, N. Todreas, Annual project status report 2000, MIT-ANP-PR-071, INEFL/EXT-2009-00994

  6. Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: options and trends

  7. F. Carminati, R. Klapisch, J.P. Revol, Ch. Roche, J.A. Rubio, C. Rubbia, An energy amplifier for cleaner and inexhaustible nuclear energy production driven by particle beam accelerator, CERN Report No. CERN/AT/93-47 (ET) (1993)

  8. C. Rubbia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Mandrilion, J.P. Revol, Ch. Roche, Conceptual design of a fast neutron operated high power energy amplifier, CERN/AT/ 95-44 (ET) (1995)

  9. Accelerator Driven Systems, Energy generation and transmutation of nuclear waste. Status report: IAEATECDOC- 985 (1997)

  10. S. Ganesan, Pramana. J. Phys. 68, 257 (2007)

    Article  ADS  Google Scholar 

  11. K. Oyamatsu, H. Takeuchi, M. Sagisaka, J. Katakura, J. Nucl. Sci. Techol. 38, 477 (2001)

    Article  Google Scholar 

  12. C. Wagemans, The Nuclear Fission Process (CRC, London, 1990)

    Google Scholar 

  13. R. Vandenbosch and J.R. Huizenga, Nuclear Fission (Academic, New York, 1973)

    Google Scholar 

  14. IAEA-EXFOR Database Version of 2020-01-28, Available at http://www-nds.iaea.org/exfor

  15. ...N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A.I. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva, R.A. Forrest, T. Fukahori, N. Furutachi, S. Ganesan, Z. Ge, O.O. Gritzay, M. Herman, B. Lalremruata, Y.O. Lee, A. Makinaga, K. Matsumoto, M. Mikhaylyukova, G. Pikulina, V.G. Pronyaev, A. Saxena, O. Schwerer, S.P. Simakov, N. Soppera, R. Suzuki, X. Tao, S. Taova, V.V. Varlamov, J. Wang, S.C. Yang, V. Zerkin, Y. Zhuang, Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nucl Data Sheets 120, 272 (2014). https://doi.org/10.1016/j.nds.2014.07.065

    Article  ADS  Google Scholar 

  16. R.H. Iyer, H. Naik, A.K. Pandey, P.C. Kalsi, R.J. Singh, A. Ramaswami, A.G.C. Nair, Nucl. Sci. and Eng. 135, 227 (2000)

    Article  Google Scholar 

  17. H. Naik, R.J. Singh, R.H. Iyer, Eur. Phys. J. A 16, 495 (2003)

    Article  ADS  Google Scholar 

  18. H. Naik, S.P. Dange, App. Radiation Isotopes 127, 92 (2017)

    Article  Google Scholar 

  19. A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)

    Article  ADS  Google Scholar 

  20. H.N. Erten and N.K. Aras, J. Inorg. Nucl. Chem. 41, 149 (1979)

    Article  Google Scholar 

  21. NuDat 2.6, National Nuclear Data Center, Brookhaven National Laboratory, updated 2011, http://www.nndc.bnl.gov/

  22. S.Y.F. Chu, L.P. Ekstrom and R.B. Firestone, The Lund LBNL, Nuclear Data Search, Version 2.0, February 1999, WWW Table of Radioactive Isotopes, http://nucleadata.nuclear.Ju.se/toi/

  23. J. Blachot and Ch. Fiche, Ann. Phys. (Paris) 6, 3–218 (1981)

    ADS  Google Scholar 

  24. Nuclear Energy Agency (NEA), Evaluated Nuclear Data Library Descriptions, ENDF/B-VIII.0, http://www.oecd-nea.org/

  25. H. Naik, S.P. Dange, W. Jang and R.J. Singh, Eur. Phys. J. A 56(9), 227 (2020)

    Article  ADS  Google Scholar 

  26. C.D. Coryell, M. Kaplan and R.D. Fink, Can J. Chem. 39, 646 (1961)

    Article  Google Scholar 

  27. N. Sugarman and A. Turkevich, in Radiochemical Studies: The Fission Product, edited by C. D. Coryell and N. Sugarman, Vol. 3 (McGraw-Hill, New York, 1951), p. 1396

  28. B.F. Rider, Compilation of fission products yields, Vallecitos Nuclear centre Reports, NEDO 12154 3c ENDF-327 (1981)

  29. T.R. England and B.F. Rider, Evaluation and compilation of fission products yields. Los Alamos National Laboratory, LA-UR-94-3106, ENDF-349, ENDF/B-VI (1993)

  30. H. Naik, S.P. Dange, R.J. Singh and S.B. Manohar, Nucl. Phys. A 618, 143 (1997)

    Article  ADS  Google Scholar 

  31. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    Article  ADS  Google Scholar 

  32. U. Brosa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  33. R.S. Iyer, H.C. Jain, M. N. Namboodiri, M. Rajgopalan Rajkishore, M.V. Ramaniah, C.L. Rao, N. Ravindran, H. D. Sharma, Proc. Conf. Physics and Chemistry of Fission, Vienna, Austria, March 22, 1965, Vol. I, Page 439, IAEA (1965)

  34. S. Katcoff, Nucleonics 18, 201 (1960)

    Google Scholar 

  35. E.K. Hyde, The Nuclear Properties of Heavy Elements, vol. III (Englewood Cliffs, New Jersey, Presentic Hall, 1964), p. 215

    Google Scholar 

  36. H.N. Erten, A. Grutter, E. Rossler, H.R. von Gunte, Nucl. Sci. Eng. 79, 167 (1981)

    Article  Google Scholar 

  37. M.. N. Namboodiri, M. Rajgopalan Rajkishore, M..V. Ramaniah, J. Inorg. Nucl. Chem 30, 2305 (1968)

    Article  Google Scholar 

  38. H. Naik, A.G.C. Nair, P.C. Kalsi, A.K. Pandey, R.J. Singh, A. Ramaswami, R.H. Iyer, Radiochimica Acta 75, 69 (1996)

    Article  Google Scholar 

  39. R. Stella and L.G. Moretto, V. Maxia, M. Dicasa, V. Crepsi, M.A. Roller (1969) J.Inor. Nucl. Chem. 31, 3739

    Article  Google Scholar 

  40. H. Naik, S.P. Dange, W. Jang, R.J. Singh, Eur. Phys. J. A. 57, 112 (2021)

    Article  ADS  Google Scholar 

  41. William A. Myers, M.V. Kantelo, R.L. Osborne, A.L. Prindle, D.R. , Nethaway. Phys. Rev. C 18, 1700 (1978)

    Article  ADS  Google Scholar 

  42. R.A. Siga, M.V. Kantelo, D.H. Sisson, A.L. Prindle, D.R. Nethaway, Phys. Rev. 22, 245 (1983)

    Google Scholar 

  43. R.R. Rickard, C.F. Goeking, E.I. Wyatt, Nucl. Sci. Eng. 23, 115 (1965)

    Article  Google Scholar 

  44. J.G. Cunninghame, J. Inorg. Nucl. Chem. 4, 1 (1957)

    Article  Google Scholar 

  45. D.C. Hoffman and M.M. Hoffman, Ann. Rev. Nucl. Part. Sci. 24, 151 (1974)

    Article  ADS  Google Scholar 

  46. G. Scamps and C. Simenel, Nature 564, 382 (2018)

    Article  ADS  Google Scholar 

  47. G. Scamps and C. Simenel, Phys. Rev. C 100, 041602(R) (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. R. H. Iyer, earlier head of Radiochemistry Division, BARC for his keen interest and support during this work. The authors are also thankful to staff of the APSARA and CIRUS reactors at BARC for their helps in providing the irradiation facility and successfully carrying out the irradiations during experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Additional information

Communicated by Jose Benlliure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, H., Dange, S.P., Singh, R.J. et al. Mass yield distribution in the fission of \({}^{244}\)Cm induced by a spectrum of epi-cadmium to fast neutron. Eur. Phys. J. A 57, 176 (2021). https://doi.org/10.1140/epja/s10050-021-00485-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00485-w

Navigation