Skip to main content
Log in

Dynamics of light hypernuclei in collisions of \(^{197}\)Au+\(^{197}\)Au at GeV energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The dynamics of light hypernuclei and nuclear clusters produced in \(^{197}\)Au+\(^{197}\)Au collisions has been investigated thoroughly with a microscopic transport model. All possible channels of hyperon production and transportation of hyperons in nuclear medium are implemented into the model. The light complex fragments are recognized with the Wigner density approach at the stage of freeze out in nuclear collisions. The isospin diffusion in the collisions is responsible for the neutron-rich cluster formation. The collective flows of nuclear clusters are consistent with the experimental data from FOPI collaboration. It is found that the influence of the hyperon-nucleon potential on the free hyperons is negligible, but available for the light hypernuclide formation. The directed and elliptic flows of \(^{3}_{\Lambda }\)H and \(^{4}_{\Lambda }\)H at incident energies of 2, 2.5, 3, 3.5 and 4 GeV/nucleon are investigated thoroughly and manifest the same structure with the nuclear clusters. The hypernuclear yields are produced in a wide rapidity and momentum regime with increasing the beam energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

References

  1. M. Danysz, J. Pniewski, Philos. Mag. 44, 348 (1953)

    Google Scholar 

  2. K. Nakazawa, S. Kinbara, A. Mishina et al., J. Phys. G Conf. Ser. 569, 012082 (2014)

    Google Scholar 

  3. A. Gal, E.V. Hungerford, D.J. Millener, Rev. Mod. Phys. 88, 035004 (2016)

    ADS  Google Scholar 

  4. H. Lv, S.S. Zhang, Z.H. Zhang, Y.Q. Wu, J. Liu, L.G. Cao, Chin. Phys. Lett. 35, 062102 (2018)

    ADS  Google Scholar 

  5. E. Hiyama, K. Nakazawa, Annu. Rev. Nucl. Part. Sci. 68, 131 (2018)

    ADS  Google Scholar 

  6. O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006)

    ADS  Google Scholar 

  7. E. Botta, T. Bressani, G. Garbarino, Eur. Phys. J. A 48, 41 (2012)

    ADS  Google Scholar 

  8. A. Feliciello, T. Nagae, Rep. Prog. Phys. 78, 096301 (2015)

    ADS  Google Scholar 

  9. C. Rappold, E. Kim, T.R. Saito et al., (HypHI Collaboration), Phys. Rev. C 88, 041001(R) (2013)

  10. STAR Collaboration, Science 328, 58 (2010)

  11. C. Rappold, E. Kim, D. Nakajima et al., Nucl. Phys. A 913, 170 (2013)

    ADS  Google Scholar 

  12. T.R. Saito, D. Nakajima, C. Rappold et al., Nucl. Phys. A 881, 218 (2012)

    ADS  Google Scholar 

  13. J.C. Yang, J.W. Xia, G.Q. Xiao et al., Nucl. Instrum. Methods B 317, 263 (2013)

    ADS  Google Scholar 

  14. X. Chen, J.C. Yang, J.W. Xia et al., Nucl. Instrum. Methods A 920, 37 (2019)

    ADS  Google Scholar 

  15. PANDA Collaboration, http://www-panda.gsi.de, K.-T. Brinkmann, P. Gianotti, and I. Lehmann, Nucl. Phys. News 16, 15 (2006). https://doi.org/10.1080/10506890600579868

  16. T.R. Saito, D. Nakajima, C. Rappold et al., Nucl. Phys. A 881, 218 (2012)

    ADS  Google Scholar 

  17. T.R. Saito, E. Kim, D. Nakajima, Few-Body Syst. 54, 1211 (2013)

    ADS  Google Scholar 

  18. NICA White Paper, http://theor.jinr.ru/twiki-cgi/view/NICA/WebHome. Accessed 2014

  19. H. Tamura, Prog. Theor. Exp. Phys. (2012). https://doi.org/10.1093/ptep/pts056

    Article  Google Scholar 

  20. C. Rappold, J. López-Fidalgo, Phys. Rev. C 94, 044616 (2016)

    ADS  Google Scholar 

  21. T.R. Saito, C. Rappold, O. Bertini et al., Nucl. Phys. A 954, 199 (2016)

    ADS  Google Scholar 

  22. W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999)

    ADS  Google Scholar 

  23. C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006)

    ADS  Google Scholar 

  24. B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008)

    ADS  Google Scholar 

  25. M. Di Toro, V. Baran, M. Colonna, V. Greco, J. Phys. G: Nucl. Part. Phys. 37, 083101 (2010)

    ADS  Google Scholar 

  26. C. Hartnack, H. Oeschler, Y. Leifels, E. Bratkovskaya, J. Aichelin, Phys. Rep. 510, 119 (2012)

    ADS  Google Scholar 

  27. B.E. Gibson, E.V. Hungerford III, Phys. Rep. 257, 349 (1995)

    ADS  Google Scholar 

  28. A. Pérez-Obiol, D. Gazda, E. Friedman, A. Gal. arXiv:2006.16718

  29. S. Weissenborn, D. Chatterjee, J. Schaffner-Bielich, Nucl. Phys. A 881, 62 (2012)

    ADS  Google Scholar 

  30. W.Z. Jiang, R.Y. Yang, D.R. Zhang, Phys. Rev. C 87, 064314 (2013)

    ADS  Google Scholar 

  31. A.S. Botvina, J. Pochodzalla, Phys. Rev. C 76, 024909 (2007)

    ADS  Google Scholar 

  32. A.S. Botvina, K.K. Gudima, J. Steinheimer et al., Nucl. Phys. A 881, 228 (2012)

    ADS  Google Scholar 

  33. A. Andronic, P. Braun-Munzinger, J. Stachel, H. Stöcker, Phys. Lett. B 697, 203 (2011)

    ADS  Google Scholar 

  34. A.S. Botvina, J. Steinheimer, E. Bratkovskaya, M. Bleicher, J. Pochodzalla, Phys. Lett. B 742, 7 (2015)

    ADS  Google Scholar 

  35. Z.Q. Feng, Phys. Rev. C 93, 041601(R) (2016)

    ADS  Google Scholar 

  36. T. Gaitanos, Ch. Moustakidis, G.A. Lalazissis, H. Lenske, Nucl. Phys. A 954, 308 (2016)

    ADS  Google Scholar 

  37. A. Le Fèvre, J. Aichelin, C. Hartnack, Y. Leifels, Phys. Rev. C 100, 034904 (2019)

    ADS  Google Scholar 

  38. Z.Q. Feng, Phys. Rev. C 84, 024610 (2011)

    ADS  Google Scholar 

  39. Z.Q. Feng, Nucl. Sci. Tech. 29, 40 (2018)

    Google Scholar 

  40. Z.Q. Feng, Phys. Rev. C 101, 014605 (2020)

    ADS  Google Scholar 

  41. Z.Q. Feng, Nucl. Phys. A 919, 32 (2013)

    ADS  Google Scholar 

  42. Z.Q. Feng, W.J. Xie, P.H. Chen, J. Chen, G.M. Jin, Phys. Rev. C 92, 044604 (2015)

    ADS  Google Scholar 

  43. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997)

    ADS  Google Scholar 

  44. S. Petschauer, J. Haidenbauer, N. Kaiser, U.-G. Meißner, W. Weise, Eur. Phys. J. A 52, 15 (2016)

    ADS  Google Scholar 

  45. J. Cugnon, P. Deneye, J. Vandermeulen, Phys. Rev. C 41, 1701 (1990)

    ADS  Google Scholar 

  46. R. Mattiello, H. Sorge, H. Stöcker, W. Greiner, Phys. Rev. C 55, 1443 (1997)

    ADS  Google Scholar 

  47. L.W. Chen, C.M. Ko, B.A. Li, Nucl. Phys. A 729, 809 (2003)

    ADS  Google Scholar 

  48. P. Chomaz, M. Colonna, J. Randrup, Phys. Rep. 389, 263 (2004)

    ADS  Google Scholar 

  49. M. Colonna, M. Di Toro, A. Guarnera, V. Latora, A. Smerzi, Phys. Lett. B 307, 273 (1993)

    ADS  Google Scholar 

  50. M. Colonna, M. Di Toro, A. Guarnera, Nucl. Phys. A 580, 312 (1994)

    ADS  Google Scholar 

  51. J. Pochatlzalla et al., Phys. Rev. Lett. 75, 1040 (1995)

    ADS  Google Scholar 

  52. H.-Y. Wu, G.-X. Dai, G.-M. Jin et al., Phys. Rev. C 57, 3178 (1998)

    ADS  Google Scholar 

  53. H.-Y. Wu et al., Phys. Lett. B 538, 39 (2002)

    ADS  Google Scholar 

  54. Y.G. Ma, Phys. Rev. Lett. 83, 3617 (1999)

    ADS  Google Scholar 

  55. W. Reisdorf, Y. Leifels, A. Andronic et al., Nucl. Phys. A 876, 1 (2012)

    ADS  Google Scholar 

  56. C. Rappold et al., Phys. Lett. B 747, 129 (2015)

    ADS  Google Scholar 

  57. J. Aichelin, E. Bratkovskaya, A. Le Fèvre, V. Kireyeu, V. Kolesnikov, Y. Leifels, V. Voronyuk, G. Coci, Phys. Rev. C 101, 044905 (2020)

    ADS  Google Scholar 

  58. Z.Q. Feng, Phys. Rev. C 102, 044604 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Projects No. 11722546 and No. 11675226) and the Talent Program of South China University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Qing Feng.

Additional information

Communicated by Emiko Hiyama

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, ZQ. Dynamics of light hypernuclei in collisions of \(^{197}\)Au+\(^{197}\)Au at GeV energies. Eur. Phys. J. A 57, 18 (2021). https://doi.org/10.1140/epja/s10050-020-00305-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00305-7

Navigation