Skip to main content
Log in

Setup commissioning for an improved measurement of the D(p,\(\gamma \))\(^3\)He cross section at Big Bang Nucleosynthesis energies

LUNA collaboration

  • Special Article – Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Among the reactions involved in the production and destruction of deuterium during Big Bang Nucleosynthesis, the deuterium-burning D(p,\(\gamma \))\(^3\)He reaction has the largest uncertainty and limits the precision of theoretical estimates of primordial deuterium abundance. Here we report the results of a careful commissioning of the experimental setup used to measure the cross-section of the D(p,\(\gamma \))\(^3\)He reaction at the Laboratory for Underground Nuclear Astrophysics of the Gran Sasso Laboratory (Italy). The commissioning was aimed at minimising all sources of systematic uncertainty in the measured cross sections. The overall systematic error achieved (\(< 3\%\)) will enable improved predictions of BBN deuterium abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: ...].

Notes

  1. The astrophysical S(E) factor is defined as [6]: \(S(E)=E\sigma (E)\exp {(2\pi \eta )}\), where E is the energy of interaction in the centre of mass system, \(\sigma (E)\) is the energy dependent cross-section, and \(\eta \) is the Sommerfeld parameter \(\eta (E)=\mathrm{Z_1 Z_2}\alpha (\mu c^2/2E)^{1/2}\) (with Z\(_i\) atomic numbers of the interacting particles, \(\alpha \) fine structure constant, \(\mu \) reduced mass, and c speed of light).

  2. The relative efficiency is defined at 1.33 MeV relative to that of a standard 3-diameter, 3-long NaI(Tl) scintillator at 25 cm from the source.

  3. The power dissipated by the beam is calculated as the product of the beam intensity and the beam energy lost in the gas. For our experiment, we obtain 23.3 mW/cm (8.5 mW/cm) at the lowest (highest) beam energy \(E_\mathrm{p} = 50\) keV (\(E_\mathrm{p} = 395\) keV) used.

References

  1. P. Serpico et al., J. Cosmol. Astrophys. Phys. 2004, 010 (2004)

    Article  Google Scholar 

  2. C. Pitrou, A. Coc, J. Uzan, E. Vangioni, Phys. Rep. 754, 1 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. E. Di Valentino et al., Phys. Rev. D 90, 023543 (2014)

    Article  ADS  Google Scholar 

  4. R. Cooke, M. Pettini, C. Steidel, Astrophys. J. 855, 102 (2018)

    Article  ADS  Google Scholar 

  5. A. Coc et al., Phys. Rev. D 92, 123526 (2015)

    Article  ADS  Google Scholar 

  6. C. Rolfs, W. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)

    Google Scholar 

  7. C. Casella et al., Nucl. Phys. A 706, 203 (2002)

    Article  ADS  Google Scholar 

  8. C. Broggini, D. Bemmerer, A. Caciolli, D. Trezzi, Prog. Part. Nucl. Phys. 98, 55 (2018)

    Article  ADS  Google Scholar 

  9. F. Cavanna, P. Prati, Int. J. Mod. Phys. A 33, 1843010 (2018)

    Article  ADS  Google Scholar 

  10. L. Ma et al., Phys. Rev. C 55, 588 (1997)

    Article  ADS  Google Scholar 

  11. G. Schmid et al., Phys. Rev. C 56, 2565 (1997)

    Article  ADS  Google Scholar 

  12. G. Griffiths, M. Lal, C. Scarfe, Can. J. Phys. 41, 724 (1963)

    Article  ADS  Google Scholar 

  13. I. Tišma et al., Eur. Phys. J. A 55, 137 (2019)

    Article  ADS  Google Scholar 

  14. L. Marcucci, G. Mangano, A. Kievsky, M. Viviani, Phys. Rev. Lett. 116, 102501 (2016)

    Article  ADS  Google Scholar 

  15. E. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  16. G. Griffiths, E. Larson, L. Robertson, Can. J. Phys. 40, 402 (1962)

    Article  ADS  Google Scholar 

  17. G. Schmid et al., Phys. Rev. Lett. 76, 3088 (1996)

    Article  ADS  Google Scholar 

  18. K.M. Nollett, S. Burles, Phys. Rev. D 61, 123505 (2000)

    Article  ADS  Google Scholar 

  19. A. Formicola et al., Nucl. Inst. Meth. A 507, 609 (2003)

    Article  ADS  Google Scholar 

  20. F. Cavanna et al., Eur. Phys. J. A 50, 179 (2014)

    Article  ADS  Google Scholar 

  21. S. Daigle et al., Phys. Rev. C 94, 025803 (2016)

    Article  ADS  Google Scholar 

  22. M. Anders et al., Eur. Phys. J. A 49, 28 (2013)

    Article  ADS  Google Scholar 

  23. M. Marta et al., Nucl. Inst. Methods Phys. Res. A 569, 727 (2006)

    Article  ADS  Google Scholar 

  24. J. Osborne et al., Nucl. Phys. A 419, 115 (1984)

    Article  ADS  Google Scholar 

  25. C. Casella et al., Nucl. Instrum. Methods A 489, 160 (2002)

    Article  ADS  Google Scholar 

  26. F. Ferraro et al., Eur. Phys. J. A 54, 44 (2018)

    Article  ADS  Google Scholar 

  27. J. Ziegler, M.D. Ziegler, J. Biersack, Nucl. Instrum. Methods B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  28. G.F. Knoll, Radiation Detection and Measurement, 4th edn. (Wiley, New York, 2010)

    Google Scholar 

  29. A. Formicola et al., Phys. Lett. B 591, 61 (2004)

    Article  ADS  Google Scholar 

  30. D. Bemmerer et al., Nucl. Phys. A 779, 297 (2006)

    Article  Google Scholar 

  31. G. Gyürky et al., Phys. Rev. C 100, 015805 (2019)

    Article  ADS  Google Scholar 

  32. M. Marta et al., Phys. Rev. C 83, 045804 (2011).

    Article  ADS  Google Scholar 

  33. G. Gilmore, J. Hemingway, Practical Gamma-ray spectrometry (Wiley, New York, 1995)

    Google Scholar 

  34. M. Marta et al., Phys. Rev. C 78, 022802(R) (2008)

    Article  ADS  Google Scholar 

  35. L. Marcucci, Ab initio angular distribution for D(p,\(\gamma \))\(^3\)He reaction, Private communication (2018)

Download references

Acknowledgements

The authors acknowledge the invaluable contribution of Donatello Ciccotti for his support during all phases of the experiment at LUNA, Marco D’Incecco for his work on custom electronics, Massimiliano De Deo for the implementation of the data acquisition system, and Giuliano Sobrero for the development of the new gas target control panel. We also acknowledge the mechanical workshop at LNGS, INFN sez. Bari and Dipartimento Interateneo di Fisica Bari. This work has mainly been supported by INFN, with contributions by Helmholtz Association (ERC-RA-0016), DFG (BE4100/4-1), NKFIH (K120666), COST (ChETEC CA16117), STFC-UK and the University of Naples Compagnia di San Paolo (STAR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Gustavino or S. Zavatarelli.

Additional information

Communicated by Maria Borge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mossa, V., Stöckel, K., Cavanna, F. et al. Setup commissioning for an improved measurement of the D(p,\(\gamma \))\(^3\)He cross section at Big Bang Nucleosynthesis energies. Eur. Phys. J. A 56, 144 (2020). https://doi.org/10.1140/epja/s10050-020-00149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00149-1

Navigation