Skip to main content
Log in

Nuclear neck-density determination at Fermi energy with CHIMERA detector

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Binary collisions of either stable or radioactive heavy ions at Fermi energies allow to study the nuclear reaction mechanisms under dynamical conditions of non-equilibrium and the formation of transient pieces of nuclear matter of very short mean life times at sub-normal density. An important role in the evolutionary phase of the collision is played by the gradient of the nuclear density affecting the isospin asymmetry of the reaction products by typical transport phenomena such as the isospin diffusion and drift. Experimental determination of the value of the nuclear matter density in the early phase of the collision is a crucial step towards understanding the underlying mechanism responsible for the production of clusters. In this paper a method for evaluating the nuclear density in semi-peripheral collisions in the reaction \(^{124}Sn + ^{64}Ni\) at 35 MeV/nucleon as studied with the CHIMERA multi-particle detector is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(adapted from [73])

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data generated during this study are contained in this published article].

References

  1. W.U. Schröder et al., Phys. Rev. C 16, 623 (1977)

    ADS  Google Scholar 

  2. G.R. Satchler, Introduction to Nuclear Reactions, 2nd edn. (MacMillan Education Ltd, London, 1990)

    Google Scholar 

  3. J.R. Grover, J. Gillet, Phys. Rev. 157, 802 (1967)

    ADS  Google Scholar 

  4. T. Regge, Nuovo Cimento 8(5), 671 (1958)

    Google Scholar 

  5. M. Colonna, M. Di Toro, A. Guarnera, Nucl. Phys. A 589(1), 160 (1995)

    ADS  Google Scholar 

  6. J. Wilczyński, Phys. Lett. B 47, 484 (1973)

    ADS  Google Scholar 

  7. J. Randrup, Nucl. Phys. A 383(3), 468 (1982)

    ADS  Google Scholar 

  8. J.B. Natowitz, Nucl. Phys. A 387(1), 65 (1982)

    ADS  Google Scholar 

  9. G. Casini et al., Phys. Rev. Lett. 71, 2567 (1993)

    ADS  Google Scholar 

  10. A.A. Stefanini et al., Z. Phys. A 351, 167 (1995)

    ADS  Google Scholar 

  11. R. Yanez et al., Phys. Rev. Lett. 82, 3585 (1999)

    ADS  Google Scholar 

  12. A. Rodriguez Manso et al., Phys. Rev. C 100, 044612 (2019)

    Google Scholar 

  13. G. Fuchs, H.H. Wolter, Eur. Phys. J. A 30, 5 (2006)

    ADS  Google Scholar 

  14. Y.X. Zhang et al., Phys. Rev. C 97(3), 034625 (2018)

    ADS  Google Scholar 

  15. B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000)

    ADS  Google Scholar 

  16. B.-A. Li, L.-W. Chen, C.M. Koc, Phys. Rep. 464, 113 (2008)

    ADS  Google Scholar 

  17. M. Baldo, G.F. Burgio, Prog. Part. Nucl. Phys. 91, 203 (2016)

    ADS  Google Scholar 

  18. M. Oertel, M. Hempel, T. Klahn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017)

    ADS  Google Scholar 

  19. Dynamics and Thermodynamics with Nuclear Degrees of Freedom, ed. by Ph. Chomaz, F. Gulminelli, W. Trautmann, S.J. Yennello (SIF and Springer, Berlin, 2006), Eur. Phys. J. A, vol. 30, no. 1. ISSN 1434-6001

  20. W. Gawlikowicz, Acta Phys. Polon. B 40(6), 1695 (2009)

    ADS  Google Scholar 

  21. A.B. McIntosh, S.J. Yennello, Prog. Part. Nucl. Phys. 108, 1 (2019)

    Google Scholar 

  22. M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012)

    ADS  Google Scholar 

  23. V. Baran et al., Phys. Rev. C 72, 064620 (2005)

    ADS  Google Scholar 

  24. W.G. Lynch, Nucl. Phys. A 40, 471–583 (1995)

    ADS  Google Scholar 

  25. M. Di Toro, A. Olmi, R. Roy, Eur. Phys. J. A 30, 65 (2006)

    ADS  Google Scholar 

  26. E. De Filippo et al., Phys. Rev. C 86, 014610 (2012)

    ADS  Google Scholar 

  27. K. Hagel, J.B. Natowitz, G. Rōpke, Eur. Phys. J. A 50, 39 (2014)

    ADS  Google Scholar 

  28. L. Qin et al., Phys. Rev. Lett. 108, 172701 (2012)

    ADS  Google Scholar 

  29. Bao-An Li et al., Int. J. Mod. Phys. E 7, 147 (1998)

    ADS  Google Scholar 

  30. R. Wada et al., Phys. Rev. C 85, 064618 (2012)

    ADS  Google Scholar 

  31. P. Russotto et al., Phys. Rev. C 94, 034608 (2016)

    ADS  Google Scholar 

  32. K. Sümmerer, B. Blank, Phys. Rev. C 61, 034607 (2000)

    ADS  Google Scholar 

  33. R. Charity, Phys. Rev. C 58, 1073 (1998)

    ADS  Google Scholar 

  34. A. Pagano, Nucl. Phys. News 22, 25 (2012)

    ADS  Google Scholar 

  35. R.T. de Souza, N. Le Neindre, A. Pagano, K.H. Schmidt, Eur. Phys. J. A 30, 275 (2006)

    ADS  Google Scholar 

  36. M. Mutterer et al., IEEE Trans. Nucl. Sci. 47, 756 (2000)

    ADS  Google Scholar 

  37. L. Bardelli et al., Nucl. Instrum. Methods A 654, 272 (2011)

    ADS  Google Scholar 

  38. B. Gnoffo, Il Nuovo Cimento 39 C 275, 28 (2016)

    Google Scholar 

  39. S. Pirrone et al., Eur. Phys. J. A 55, 22 (2019)

    ADS  Google Scholar 

  40. G. Ademard et al., Phys. Rev. C 83, 054619 (2011)

    ADS  Google Scholar 

  41. E.V. Pagano et al., Eur. Phys. J. Web Conf. 117, 10008 (2016)

    Google Scholar 

  42. L. Acosta et al., J. Phys. Conf. Ser. 730, 012001 (2016)

    Google Scholar 

  43. V. Henzl et al., Phys. Rev. C 85, 014606 (2012)

    ADS  Google Scholar 

  44. E. De Filippo et al., J. Phys. Conf. Ser. 1014, 012003 (2018)

    Google Scholar 

  45. E. Pollacco et al., Nucl. Instrum. Methods A 887, 81 (2018)

    ADS  Google Scholar 

  46. N.S. Martorana et al., Phys. Lett. B 782, 112 (2018)

    ADS  Google Scholar 

  47. R.T. de Souza, N. Le Neindre, A. Pagano, K.-H. Schmidt, Eur. Phys. J. A 30, 275 (2006)

    ADS  Google Scholar 

  48. E. De Filippo, A. Pagano, Eur. Phys. J. A 50, 32 (2014)

    ADS  Google Scholar 

  49. V. Baran et al., Phys. Rep. 410, 335 (2005)

    ADS  Google Scholar 

  50. https://indico.cern.ch/event/648134/contributions/2813203

  51. E.V. Pagano et al., Nucl. Instrum. Methods A 905, 47 (2018)

    ADS  Google Scholar 

  52. E.V. Pagano et al., Nucl. Instrum. Methods A 889, 83 (2018)

    ADS  Google Scholar 

  53. E.V. Pagano et al., Nuovo Cimento C 41, 181 (2018)

    ADS  Google Scholar 

  54. L. Auditore, A. Pagano, P. Russotto et al., Nuovo Cimento C 108, 241 (2015)

    Google Scholar 

  55. G. Raciti, G. Cardella et al., Phys. Rev. Lett. 100, 192503 (2008)

    ADS  Google Scholar 

  56. D. Dell’Aquila, L. Acosta et al., Eur. Phys. J. Conf. 117, 06011 (2016)

    Google Scholar 

  57. D. Dell’Aquila, I. Lombardo et al., Phys. Rev. C 93, 024611 (2016)

    ADS  Google Scholar 

  58. P. Russotto, L. Calabretta, G. Cardella et al., J. Phys. Conf. Ser. 1014, 012016 (2018)

    Google Scholar 

  59. M. Colonna et al., Nucl. Phys. A 642, 449 (1998)

    ADS  Google Scholar 

  60. V. Baran, M. Colonna, M. Di Toro, Nucl. Phys. A 730, 329 (2004)

    ADS  Google Scholar 

  61. G. Wolschin, Phys. Rev. Lett. 48, 1004 (1982)

    ADS  Google Scholar 

  62. P. Russotto et al., Eur. Phys. J. A 56, 12 (2020)

    ADS  Google Scholar 

  63. D. Guerreau, Nucl. Phys. A 447, 37c (1985)

    ADS  Google Scholar 

  64. R. Dayras, A. Pagano et al., Nucl. Phys. A 460, 299 (1986)

    ADS  Google Scholar 

  65. U. Brosa, S. Grossmann, Phys. G Nucl. Phys. 10, 933 (1984)

    ADS  Google Scholar 

  66. U. Brosa et al., Phys. Rep. 197(4), 167 (1990)

    ADS  Google Scholar 

  67. B. Borderie, Ann. Phys. Fr. 17, 349 (1992)

    ADS  Google Scholar 

  68. J. Wilczyński, E. De Filippo, A. Pagano et al., Int. J. Mod. Phys. E 14, 353 (2004)

    ADS  Google Scholar 

  69. E. De Filippo, A. Pagano, J. Wilczyński et al., Phys. Rev. C 71, 044602 (2005)

    ADS  Google Scholar 

  70. A. Pagano, Acta Phys. Polon. B Proc. Suppl. 10(1), 139 (2017)

    ADS  Google Scholar 

  71. V.E. Viola, K. Kwiatkowski, M. Walker, Phys. Rev. C 31, 1550 (1985)

    ADS  Google Scholar 

  72. D.J. Hinde et al., Nucl. Phys. A 472, 044602 (1987)

    Google Scholar 

  73. A. Pagano, in Proc. of Int, School of Physics \(\ll \)Enrico Fermi\(\gg \)14–19 July 2017, SIF, ed. by F. Gramegna, P. Van Duppen, A.Vitturi, S.Pirrone (IOS Press, 2019), p. 387

  74. P. Glāssel, D.V. Harrach, H.J. Specht, Z. Phys. A At. Nuclei 310, 189 (1983)

  75. Y.D. Kim, R.T. de Souza, C.K. Gelbke, W.G. Gong, S. Pratt, Phys. Rev. C 45, 387 (1992)

    ADS  Google Scholar 

  76. J. Łukasik et al., Phys. Lett. B 566, 76 (2003)

    ADS  Google Scholar 

  77. S.Y. Shmakov, S.P. Avdeyev, V.A. Karnaukhov et al., Phys. At. Nucl. 58, 1635 (1995)

    Google Scholar 

  78. S. Piantelli, L. Bidini, G. Poggi, M. Bini, G. Casini et al., Phys. Rev. Lett. 88, 052701 (2002)

    ADS  Google Scholar 

  79. K. Siwek-Wilczyńska, J. Wilczyński, R.H. Siemssen, Nucl. Phys. A 583, 141c (1995)

    ADS  Google Scholar 

  80. A. Pagano et al., Nucl. Phys. A 734, 504c (2004)

    ADS  Google Scholar 

  81. M. Papa, G. Giuliani, A. Bonasera, J. Comput. Phys. 208, 403 (2005)

    ADS  Google Scholar 

  82. M. Papa et al., Phys. Rev. C 75, 054616 (2007)

    ADS  Google Scholar 

  83. C.P. Montoya et al., Phys. Rev. Lett. 73, 3070 (1994)

    ADS  Google Scholar 

  84. J. Tōke et al., Nucl. Phys. A 583, 519 (1995)

    ADS  Google Scholar 

  85. J.F. Dempsey et al., Phys. Rev. C 54, 1710 (1996)

    ADS  Google Scholar 

  86. E. Plagnol et al., Phys. Rev. C 61, 014606 (1999)

    ADS  Google Scholar 

  87. P. Milazzo et al., Phys. Lett. B 509, 204 (2001)

    ADS  Google Scholar 

  88. B. Davin et al., Phys. Rev. C 65, 064614 (2002)

    ADS  Google Scholar 

  89. M. Colonna et al., J. Phys. Conf. Ser. 413, 012019 (2013)

    Google Scholar 

  90. G.G. Ohlsen, Nucl. Instrum. Methods 37, 240 (1965)

    ADS  Google Scholar 

  91. A.S. Goldhaber, Phys. Lett. B 53, 306 (1974)

    ADS  Google Scholar 

  92. A. Ono, Prog. Part. Nucl. Phys. 105, 139 (2019)

    ADS  Google Scholar 

  93. H. Feshbach, K. Huang, Phys. Lett. B 47, 300 (1973)

    ADS  Google Scholar 

  94. J. Mougey et al., Phys. Lett. B 105, 1–25 (1981)

    MathSciNet  Google Scholar 

  95. M. Di Toro, G. Lanzan\(\grave{o}\), A. Pagano, Phys. Rev. C 37, 1485 (1988)

    ADS  Google Scholar 

  96. G. Bertsch, in Nuclear Physics with Heavy Ions and Mesons , edited by R. Balian, M. Rho, G. Ripka (North-Holland, Amsterdam, 1978)

  97. J. Randrup, J.S. Vaagen, Phys. Lett. B 77, 170 (1978)

    ADS  Google Scholar 

  98. M. Di Toro et al., Nucl. Phys. A 681, 426c (2001)

    ADS  Google Scholar 

  99. V. Baran et al., Nucl. Phys. A 703, 603 (2002)

    ADS  Google Scholar 

  100. R. Lionti et al., Phys. Lett. B 625, 33 (2005)

    ADS  Google Scholar 

  101. R.D. Evans, The Atomic Nucleus (McGraw-Hill Publishing Company Ltd, New York, 1955)

    MATH  Google Scholar 

  102. M.A. Preston, R.K. Bhaduri, Structure of the Nucleus, 2nd edn. (Westview Press, Boulder, 1982)

    Google Scholar 

  103. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Google Scholar 

  104. G. Rōpke, Phys. Rev. C 79, 014002 (2009)

    ADS  Google Scholar 

  105. S. Typel, H.H. Wolter et al., Eur. Phys. J. A 50, 17 (2014)

    ADS  Google Scholar 

  106. G. Giuliani, H. Zheng, A. Bonasera, Prog. Part. Nucl. Phys. 76, 116 (2014)

    ADS  Google Scholar 

  107. S. Barlini et al., Phys. Rev. C 87, 054607 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

One of us (A.P.) is grateful to Ivano Lombardo from INFN Sezione di Catania for useful discussions about cluster formations. The authors are grateful to the referees for the careful reading of the manuscript and to Jerzy Lukasik for checking the numerical evaluations by an independent analysis performed on a class of the same experimental data, allowing us to remove some numerical discrepancies detected in a previous version of the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pagano.

Additional information

Communicated by Nicolas Alamanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagano, A., De Filippo, E., Geraci, E. et al. Nuclear neck-density determination at Fermi energy with CHIMERA detector. Eur. Phys. J. A 56, 102 (2020). https://doi.org/10.1140/epja/s10050-020-00105-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00105-z

Navigation