Skip to main content
Log in

The effect of gluon condensate on imaginary potential and thermal width from holography

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

By the use of the gauge/gravity duality, we calculate the imaginary part of heavy quarkonium potential and thermal width with the effect of gluon condensate which is absent in \(\hbox {AdS}_{{5}}\) background. Our results show that the dropping gluon condensate reduces the absolute value of imaginary potential and therefore decreases the thermal width both in “exact” and “approximate” approach implying that the heavy quarkonium has a weaker bound with the increase of gluon condensate. In addition, the thermal width will disappear at a critical condensate value, which indicates the dissociation of quarkonium. We conclude that increasing gluon condensate will lead to easier dissociation of heavy quarkonium for fixed temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study and no experimental data.]

References

  1. J. Adams et al., Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  2. K. Adcox et al., Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  3. E.V. Shuryak, Phys. Rep. 61, 71 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Matsui, H. Satz, Phys. Lett. B 178, 416 (1986)

    Article  ADS  Google Scholar 

  5. M. Laine, O. Philipsen, P. Romatschke, M. Tassler, JHEP 03, 054 (2007)

    Article  ADS  Google Scholar 

  6. N. Brambilla, M.A. Escobedo, J. Ghiglieri, J. Soto, A. Vairo, JHEP 09, 038 (2010)

    Article  ADS  Google Scholar 

  7. J. Noronha, A. Dumitru, Phys. Rev. Lett. 103, 152304 (2009)

    Article  ADS  Google Scholar 

  8. K Bitaghsir Fadafan, D. Giataganas, H. Soltanpanahi, JHEP 11, 107 (2013)

    Article  ADS  Google Scholar 

  9. S.I. Finazzo, J. Noronha, JHEP 11, 042 (2013)

    Article  ADS  Google Scholar 

  10. K.B. Fadafan, S.K. Tabatabaei, Eur. Phys. J. C 74, 2842 (2014)

    Article  ADS  Google Scholar 

  11. N.R.F. Braga, L.F. Ferreira, Phys. Rev. D 94(9), 094019 (2016)

    Article  ADS  Google Scholar 

  12. L. Thakur, N. Haque, H. Mishra, Phys. Rev. D 95(3), 036014 (2017)

    Article  ADS  Google Scholar 

  13. M. Laine, JHEP 05, 028 (2007)

    Article  ADS  Google Scholar 

  14. A. Beraudo, J.P. Blaizot, C. Ratti, Nucl. Phys. A 806, 312 (2008)

    Article  ADS  Google Scholar 

  15. N. Brambilla, J. Ghiglieri, A. Vairo, P. Petreczky, Phys. Rev. D 78, 014017 (2008)

    Article  ADS  Google Scholar 

  16. A. Dumitru, Y. Guo, M. Strickland, Phys. Rev. D 79, 114003 (2009)

    Article  ADS  Google Scholar 

  17. M. Margotta, K. McCarty, C. McGahan, M. Strickland, D. Yager-Elorriaga, Phys. Rev. D 83, 105019 (2011)

    Article  ADS  Google Scholar 

  18. V. Chandra, V. Ravishankar, Nucl. Phys. A 848, 330 (2010)

    Article  ADS  Google Scholar 

  19. M.A. Escobedo, F. Giannuzzi, M. Mannarelli, J. Soto, Phys. Rev. D 87(11), 114005 (2013)

    Article  ADS  Google Scholar 

  20. E.V. Shuryak, Nucl. Phys. A 750, 64 (2005)

    Article  ADS  Google Scholar 

  21. J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999)

    Article  Google Scholar 

  22. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005)

    Article  ADS  Google Scholar 

  25. G.F. de Teramond, S.J. Brodsky, Phys. Rev. Lett. 94, 201601 (2005)

    Article  ADS  Google Scholar 

  26. L. Da Rold, A. Pomarol, Nucl. Phys. B 721, 79 (2005)

    Article  ADS  Google Scholar 

  27. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik, I. Kirsch, Phys. Rev. D 69, 066007 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Kruczenski, D. Mateos, R.C. Myers, D.J. Winters, JHEP 05, 041 (2004)

    Article  ADS  Google Scholar 

  29. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005)

    Article  ADS  Google Scholar 

  30. T. Sakai, S. Sugimoto, Prog. Theor. Phys. 114, 1083 (2005). https://doi.org/10.1143/PTP.114.1083

    Article  ADS  Google Scholar 

  31. C. Csaki, M. Reece, JHEP 05, 062 (2007)

    Article  ADS  Google Scholar 

  32. S. He, M. Huang, Q.S. Yan, Y. Yang, Eur. Phys. J. C 66, 187 (2010)

    Article  ADS  Google Scholar 

  33. T. Gherghetta, J.I. Kapusta, T.M. Kelley, Phys. Rev. D 79, 076003 (2009)

    Article  ADS  Google Scholar 

  34. T.M. Kelley, S.P. Bartz, J.I. Kapusta, Phys. Rev. D 83, 016002 (2011)

    Article  ADS  Google Scholar 

  35. Y.Q. Sui, Y.L. Wu, Z.F. Xie, Y.B. Yang, Phys. Rev. D 81, 014024 (2010)

    Article  ADS  Google Scholar 

  36. Y.Q. Sui, Y.L. Wu, Y.B. Yang, Phys. Rev. D 83, 065030 (2011)

    Article  ADS  Google Scholar 

  37. D. Li, M. Huang, Q.S. Yan, Eur. Phys. J. C 73, 2615 (2013)

    Article  ADS  Google Scholar 

  38. D. Li, M. Huang, JHEP 11, 088 (2013)

    Article  ADS  Google Scholar 

  39. Y. Chen, M. Huang, Chin. Phys. C 40(12), 123101 (2016)

    Article  ADS  Google Scholar 

  40. N. Evans, A. Tedder, Phys. Lett. B 642, 546 (2006)

    Article  ADS  Google Scholar 

  41. Y. Xiong, X. Tang, Z. Luo, Chin. Phys. C 43(11), 113103 (2019)

  42. Z. Fang, S. He, D. Li, Nucl. Phys. B 907, 187 (2016)

    Article  ADS  Google Scholar 

  43. W. Xie, A. Watanabe, M. Huang, JHEP 10, 053 (2019)

  44. Zq Zhang, Df Hou, G. Chen, Phys. Lett. B 768, 180 (2017)

    Article  ADS  Google Scholar 

  45. Y. Zhong, C.B. Yang, X. Cai, S.Q. Feng, Adv. High Energy Phys. 2014, 193039 (2014)

    Article  Google Scholar 

  46. V. Skokov, AYu. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    Article  ADS  Google Scholar 

  47. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Phys. Rev. Lett. 73, 3499 (1994)

    Article  ADS  Google Scholar 

  48. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Krieg, A. Schafer, K.K. Szabo, JHEP 02, 044 (2012)

    Article  ADS  Google Scholar 

  49. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996)

    Article  ADS  Google Scholar 

  50. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, Phys. Rev. D 86, 071502 (2012)

    Article  ADS  Google Scholar 

  51. V. Voronyuk, V.D. Toneev, W. Cassing, E.L. Bratkovskaya, V.P. Konchakovski, S.A. Voloshin, Phys. Rev. C 83, 054911 (2011)

    Article  ADS  Google Scholar 

  52. M. D’Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82, 051501 (2010)

    Article  ADS  Google Scholar 

  53. I.A. Shushpanov, A.V. Smilga, Phys. Lett. B 402, 351 (1997)

    Article  ADS  Google Scholar 

  54. D.E. Kharzeev, K. Landsteiner, A. Schmitt, H.U. Yee, Lect. Notes Phys. 871, 1 (2013)

    Article  ADS  Google Scholar 

  55. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)

    Article  MathSciNet  Google Scholar 

  56. F. Bruckmann, G. Endrodi, T.G. Kovacs, JHEP 04, 112 (2013)

    Article  ADS  Google Scholar 

  57. G. Baym, D. Bodeker, L.D. McLerran, Phys. Rev. D 53, 662 (1996)

    Article  ADS  Google Scholar 

  58. Y. Guo, S. Shi, S. Feng, J. Liao, Phys. Lett. B 798, 134929 (2019)

    Article  Google Scholar 

  59. B.X. Chen, S.Q. Feng (2019). arXiv:1909.10836

  60. Zq Zhang, Df Hou, Phys. Lett. B 778, 227 (2018)

    Article  ADS  Google Scholar 

  61. Z.R. Zhu, S.Q. Feng, Y.F. Shi, Y. Zhong, Phys. Rev. D 99(12), 126001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  62. X. Chen, S.Q. Feng, Y.F. Shi, Y. Zhong, Phys. Rev. D 97(6), 066015 (2018)

    Article  ADS  Google Scholar 

  63. S.I. Finazzo, J. Noronha, JHEP 01, 051 (2015)

    ADS  Google Scholar 

  64. P. Colangelo, F. Giannuzzi, S. Nicotri, F. Zuo, Phys. Rev. D 88(11), 115011 (2013)

    Article  ADS  Google Scholar 

  65. H. Leutwyler, in QCD 20 Years Later: Proceedings, Workshop, Aachen, Germany, June 9–13, 1992 (1992), pp. 693–716

  66. P. Castorina, M. Mannarelli, Phys. Rev. C 75, 054901 (2007)

    Article  ADS  Google Scholar 

  67. K. Morita, S.H. Lee, Phys. Rev. C 77, 064904 (2008)

    Article  ADS  Google Scholar 

  68. G. Boyd, D.E. Miller (1996). arXiv:hep-ph/9608482

  69. Y. Kim, B.H. Lee, C. Park, S.J. Sin, JHEP 09, 105 (2007)

    Article  ADS  Google Scholar 

  70. Y. Kim, B.H. Lee, C. Park, S.J. Sin, Phys. Rev. D 80, 105016 (2009)

    Article  ADS  Google Scholar 

  71. Zq Zhang, X. Zhu, Eur. Phys. J. C 79(2), 107 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  72. M. Ali-Akbari, D. Giataganas, Z. Rezaei, Phys. Rev. D 90(8), 086001 (2014)

    Article  ADS  Google Scholar 

  73. U. Gursoy, E. Kiritsis, L. Mazzanti, F. Nitti, Phys. Rev. Lett. 101, 181601 (2008)

    Article  ADS  Google Scholar 

  74. P.N. Kopnin, A. Krikun, Phys. Rev. D 84, 066002 (2011)

    Article  ADS  Google Scholar 

  75. X. Chen, D. Li, M. Huang, Chin. Phys. C 43(2), 023105 (2019)

    Article  ADS  Google Scholar 

  76. X. Chen, D. Li, D. Hou, M. Huang (2019). arXiv:1908.02000

  77. K.G. Wilson, Phys. Rev. D 10, 2445 (1974)

    Article  ADS  Google Scholar 

  78. J.L. Gervais, A. Neveu, Nucl. Phys. B 163, 189 (1980)

    Article  ADS  Google Scholar 

  79. A.M. Polyakov, Nucl. Phys. B 164, 171 (1980)

    Article  ADS  Google Scholar 

  80. S. Nojiri, S.D. Odintsov, Phys. Lett. B 449, 39 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  81. A. Kehagias, K. Sfetsos, Phys. Lett. B 454, 270 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  82. Y. Kim, J.P. Lee, S.H. Lee, Phys. Rev. D 75, 114008 (2007). https://doi.org/10.1103/PhysRevD.75.114008

    Article  ADS  Google Scholar 

  83. M. Kruczenski, D. Mateos, R.C. Myers, D.J. Winters, JHEP 07, 049 (2003)

    Article  ADS  Google Scholar 

  84. D. Giataganas, PoS Corfu 2012, 122 (2013)

    Google Scholar 

  85. K Bitaghsir Fadafan, S.K. Tabatabaei, J. Phys. G43(9), 095001 (2016). https://doi.org/10.1088/0954-3899/43/9/095001

    Article  ADS  Google Scholar 

  86. O. DeWolfe, S.S. Gubser, C. Rosen, Phys. Rev. D 83, 086005 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Zi-qiang Zhang for useful discussions of imaginary potential.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Chen.

Additional information

Communicated by Reinhard Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YQ., Zhu, ZR. & Chen, X. The effect of gluon condensate on imaginary potential and thermal width from holography. Eur. Phys. J. A 56, 57 (2020). https://doi.org/10.1140/epja/s10050-020-00072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00072-5

Navigation