Skip to main content
Log in

Investigation of \(J/\psi \rightarrow \gamma \, \pi ^0 \eta (\pi ^+\pi ^-, \pi ^0\pi ^0)\) radiative decays including final-state interactions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We revisit the coupled-channel \(K\bar{K}\) interactions and dynamically generate the resonances \(f_0(980)\) and \(a_0(980)\) within both the isospin and the physical bases. The \(f_0(980)\)\(a_0(980)\) mixing effects are generated in the scattering amplitudes of the coupled channels with the physical basis, which exploits the important role of the \(K\bar{K}\) channel in the dynamical nature of these resonances. With the scattering amplitudes obtained, we investigate the \(f_0(980)\) and \(a_0(980)\) contributions to the \(J/\psi \rightarrow \gamma \eta \pi ^0\), \(J/\psi \rightarrow \gamma \pi ^+\pi ^-\) and \(J/\psi \rightarrow \gamma \pi ^0\pi ^0\) radiative decays through the final-state interactions. We obtain the corresponding branching fractions \(\mathrm{Br}(J/\psi \rightarrow \gamma a_0(980) \rightarrow \gamma \eta \pi ^0) = (0.48\pm 0.03) \times 10^{-7}\), \(\mathrm{Br}(J/\psi \rightarrow \gamma f_0(980) \rightarrow \gamma \pi ^+\pi ^-) = (0.52-2.08) \times 10^{-7}\), \(\mathrm{Br}(J/\psi \rightarrow \gamma f_0(980) \rightarrow \gamma \pi ^0\pi ^0) = (0.26-1.04) \times 10^{-7}\), and predict \(\mathrm{Br}(J/\psi \rightarrow \gamma a_0(980)) = (1.24 - 1.61) \times 10^{-7}\) and \(\mathrm{Br}(J/\psi \rightarrow \gamma f_0(980)) = (0.69 - 4.00) \times 10^{-7}\). These fractions are within the upper limits of the experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical investigation.]

Notes

  1. Given the exploratory aim of our study on the mixing between the \(f_0(980)\) and \(a_0(980)\) resonances in \(J/\psi \) radiative decays, and since the experimental data can be well reproduced by unitarizing the leading-order V matrix (as shown below), we do not take into account in this work the contributions from the next-to-leading-order chiral perturbation theory amplitudes. The latter were already applied in the study of the scalar meson–meson scattering and its spectroscopy in several places in the literature, e.g., in [33, 40, 47,48,49, 51, 82, 83].

  2. We take this value for comparison of our results with Refs. [31, 33]. Now its updated value is 92.1 MeV [45], which affects only slightly the fitted value of \(q_{\mathrm{max}}\) and does not change our final results.

  3. If the lightest vector and axial-vector resonances already provide total small contributions we think that is then sensitive to neglect heavier ones as they are expected to be even smaller because of the mass squared suppression of heavier-state propagators.

  4. Let us remark that a photon coupled to the right most vertex in Fig. 8 does not give a contribution to the structure \(K_\mu P_\nu \) because the loop integral only involves the total momentum P in the denominator of the integrand. See Ref. [78] for a more detailed discussion.

  5. Reference [87] concludes that the unitarity-loop function \(G(M_{\mathrm{inv}}^ 2)\) used in Eq. (19) could actually differ by a constant of its counterpart in the evaluation of the partial-wave amplitudes, cf. Eq. (2). However, here we use a cutoff regularization for this function and insist on having a natural value for the cutoff around \(1{\text { GeV}}\) in all the cases.

  6. An extra factor of \(\sqrt{2}\) is introduced in the Clebsch–Gordan coefficients for the \(\pi \pi \) states because of the unitarity normalization for the \(I=0\)\(\pi \pi \) state [31].

  7. The \(J/\psi \) is a \(c\bar{c}\) and its decay into light-quark hadrons is an isoscalar OZI violating process rich in intermediate gluons that we also take as a scalar source following Ref. [95]. This is similar to the well-known \(^3P_0\) decay model in the quark model [96] where a \(q\bar{q}\) is produced from the vacuum and having its same quantum numbers. In this way, the isoscalar part of the electromagnetic current is selected because the radiative coupling of the photon to the charge kaons is already accounted for by the diagrams (a) and (b) of Fig. 8.

References

  1. R. Aaij et al., [LHCb Collaboration], Phys. Rev. Lett. 115, 072001 (2015). arXiv:1507.03414 [hep-ex]

  2. R. Aaij et al. [LHCb Collaboration], arXiv:1904.03947 [hep-ex]

  3. H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Phys. Rep. 639, 1 (2016). arXiv:1601.02092 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, S. Yasui, PTEP 2016(6), 062C01 (2016). arXiv:1603.09229 [hep-ph]

    Google Scholar 

  5. H.X. Chen, W. Chen, X. Liu, Y.R. Liu, S.L. Zhu, Rep. Prog. Phys. 80(7), 076201 (2017). arXiv:1609.08928 [hep-ph]

    Article  ADS  Google Scholar 

  6. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017). arXiv:1610.04528 [hep-ph]

    Article  ADS  Google Scholar 

  7. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rep. 668, 1 (2016). arXiv:1611.07920 [hep-ph]

    Article  ADS  Google Scholar 

  8. F.K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.S. Zou, Rev. Mod. Phys. 90(1), 015004 (2018). arXiv:1705.00141 [hep-ph]

    Article  ADS  Google Scholar 

  9. A. Ali, J.S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97, 123 (2017). arXiv:1706.00610 [hep-ph]

    Article  ADS  Google Scholar 

  10. S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90(1), 015003 (2018). arXiv:1708.04012 [hep-ph]

    Article  ADS  Google Scholar 

  11. M. Karliner, J.L. Rosner, T. Skwarnicki, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018). arXiv:1711.10626 [hep-ph]

    Article  ADS  Google Scholar 

  12. C.Z. Yuan, Int. J. Mod. Phys. A 33(21), 1830018 (2018). arXiv:1808.01570 [hep-ex]

    Article  ADS  Google Scholar 

  13. A. Astier, L. Montanet, M. Baubillier, J. Duboc, Phys. Lett. B 25, 294 (1967)

    Article  ADS  Google Scholar 

  14. R. Ammar et al., Phys. Rev. Lett. 21, 1832 (1968)

    Article  ADS  Google Scholar 

  15. C. Defoix, P. Rivet, J. Siaud, B. Conforto, M. Widgoff, F. Shively, Phys. Lett. B 28, 353 (1968)

    Article  ADS  Google Scholar 

  16. S.D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973)

    Article  ADS  Google Scholar 

  17. B. Hyams et al., Nucl. Phys. B 64, 134 (1973)

    Article  ADS  Google Scholar 

  18. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985)

    Article  ADS  Google Scholar 

  19. D. Morgan, M.R. Pennington, Z. Phys. C 48, 623 (1990)

    Article  ADS  Google Scholar 

  20. D. Morgan, M.R. Pennington, Phys. Rev. D 48, 1185 (1993)

    Article  ADS  Google Scholar 

  21. R.L. Jaffe, Phys. Rev. D 15, 267 (1977)

    Article  ADS  Google Scholar 

  22. R.L. Jaffe, Phys. Rev. D 15, 281 (1977)

    Article  ADS  Google Scholar 

  23. N.N. Achasov, S.A. Devyanin, G.N. Shestakov, Phys. Lett. B 96, 168 (1980)

    Article  ADS  Google Scholar 

  24. K.L. Au, M.R. Pennington, D. Morgan, Phys. Lett. B 167, 229 (1986)

    Article  ADS  Google Scholar 

  25. S.M. Flatté, Phys. Lett. B 63, 224 (1976)

    Article  ADS  Google Scholar 

  26. J.D. Weinstein, N. Isgur, Phys. Rev. Lett. 48, 659 (1982)

    Article  ADS  Google Scholar 

  27. J.D. Weinstein, N. Isgur, Phys. Rev. D 41, 2236 (1990)

    Article  ADS  Google Scholar 

  28. B.S. Zou, D.V. Bugg, Phys. Rev. D 50, 591 (1994)

    Article  ADS  Google Scholar 

  29. G. Janssen, B.C. Pearce, K. Holinde, J. Speth, Phys. Rev. D 52, 2690 (1995). arXiv:nucl-th/9411021

    Article  ADS  Google Scholar 

  30. N.A. Tornqvist, M. Roos, Phys. Rev. Lett. 76, 1575 (1996). arXiv:hep-ph/9511210

    Article  ADS  Google Scholar 

  31. J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997). Erratum: [Nucl. Phys. A 652, 407 (1999)]. arXiv:hep-ph/9702314

  32. M.P. Locher, V.E. Markushin, H.Q. Zheng, Eur. Phys. J. C 4, 317 (1998). arXiv:hep-ph/9705230

    Article  ADS  Google Scholar 

  33. J.A. Oller, E. Oset, J.R. Peláez, Phys. Rev. D 59, 074001 (1999). Erratum: [Phys. Rev. D 60, 099906 (1999)]. Erratum: [Phys. Rev. D 75, 099903 (2007)]. arXiv:hep-ph/9804209

  34. J.A. Oller, E. Oset, Phys. Rev. D 60, 074023 (1999). arXiv:hep-ph/9809337

    Article  ADS  Google Scholar 

  35. V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, A.E. Kudryavtsev, Phys. Lett. B 586, 53 (2004). arXiv:hep-ph/0308129

    Article  ADS  Google Scholar 

  36. V. Baru, J. Haidenbauer, C. Hanhart, A.E. Kudryavtsev, U.-G. Meißner, Eur. Phys. J. A 23, 523 (2005). arXiv:nucl-th/0410099

    Article  ADS  Google Scholar 

  37. V. Baru, C. Hanhart, Y.S. Kalashnikova, A.E. Kudryavtsev, A.V. Nefediev, Eur. Phys. J. A 44, 93 (2010). arXiv:1001.0369 [hep-ph]

    Article  ADS  Google Scholar 

  38. D.V. Bugg, V.V. Anisovich, A. Sarantsev, B.S. Zou, Phys. Rev. D 50, 4412 (1994)

    Article  ADS  Google Scholar 

  39. J.J. Dudek et al. [Hadron Spectrum Collaboration], Phys. Rev. D 93(9), 094506 (2016). arXiv:1602.05122 [hep-ph]

  40. Z.H. Guo, L. Liu, U.-G. Meißner, J.A. Oller, A. Rusetsky, Phys. Rev. D 95(5), 054004 (2017). arXiv:1609.08096 [hep-ph]

    Article  ADS  Google Scholar 

  41. R. Garcia-Martin, R. Kaminski, J.R. Peláez, J. Ruiz de Elvira, Phys. Rev. Lett. 107, 072001 (2011). arXiv:1107.1635 [hep-ph]

    Article  ADS  Google Scholar 

  42. G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001). arXiv:hep-ph/0103088

    Article  ADS  Google Scholar 

  43. B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001). arXiv:hep-ph/0005297

    Article  ADS  Google Scholar 

  44. I. Caprini, G. Colangelo, H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006). arXiv:hep-ph/0512364

    Article  ADS  Google Scholar 

  45. M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

  46. M. Albaladejo, J.A. Oller, Phys. Rev. Lett. 101, 252002 (2008). arXiv:0801.4929 [hep-ph]

    Article  ADS  Google Scholar 

  47. M. Albaladejo, J.A. Oller, Phys. Rev. D 86, 034003 (2012). arXiv:1205.6606 [hep-ph]

    Article  ADS  Google Scholar 

  48. Z.H. Guo, J.A. Oller, J. Ruiz de Elvira, Phys. Lett. B 712, 407 (2012). arXiv:1203.4381 [hep-ph]

    Article  ADS  Google Scholar 

  49. Z.H. Guo, J.A. Oller, J. Ruiz de Elvira, Phys. Rev. D 86, 054006 (2012). arXiv:1206.4163 [hep-ph]

    Article  ADS  Google Scholar 

  50. A Gomez Nicola, J .R. Peláez, Phys. Rev. D 65, 054009 (2002). arXiv:hep-ph/0109056

    Article  ADS  Google Scholar 

  51. Z.H. Guo, J.A. Oller, Phys. Rev. D 84, 034005 (2011). arXiv:1104.2849 [hep-ph]

    Article  ADS  Google Scholar 

  52. N.N. Achasov, S.A. Devyanin, G.N. Shestakov, Phys. Lett. B 88, 367 (1979)

    Article  ADS  Google Scholar 

  53. B. Kerbikov, F. Tabakin, Phys. Rev. C 62, 064601 (2000). arXiv:nucl-th/0006017

    Article  ADS  Google Scholar 

  54. F.E. Close, A. Kirk, Phys. Lett. B 489, 24 (2000). arXiv:hep-ph/0008066

    Article  ADS  Google Scholar 

  55. V.Y. Grishina, L.A. Kondratyuk, M. Buescher, W. Cassing, H. Stroher, Phys. Lett. B 521, 217 (2001). arXiv:nucl-th/0103081

    Article  ADS  Google Scholar 

  56. F.E. Close, A. Kirk, Phys. Lett. B 515, 13 (2001). arXiv:hep-ph/0106108

    Article  ADS  Google Scholar 

  57. N.N. Achasov, A.V. Kiselev, Phys. Lett. B 534, 83 (2002). arXiv:hep-ph/0203042

    Article  ADS  Google Scholar 

  58. A.E. Kudryavtsev, V.E. Tarasov, J. Haidenbauer, C. Hanhart, J. Speth, Phys. Rev. C 66, 015207 (2002). arXiv:nucl-th/0203034

    Article  ADS  Google Scholar 

  59. N.N. Achasov, G.N. Shestakov, Phys. Rev. Lett. 92, 182001 (2004). arXiv:hep-ph/0312214

    Article  ADS  Google Scholar 

  60. N.N. Achasov, G.N. Shestakov, Phys. Rev. D 70, 074015 (2004). arXiv:hep-ph/0405129

    Article  ADS  Google Scholar 

  61. J.J. Wu, Q. Zhao, B.S. Zou, Phys. Rev. D 75, 114012 (2007). arXiv:0704.3652 [hep-ph]

    Article  ADS  Google Scholar 

  62. C. Hanhart, B. Kubis, J.R. Peláez, Phys. Rev. D 76, 074028 (2007). arXiv:0707.0262 [hep-ph]

    Article  ADS  Google Scholar 

  63. J.J. Wu, B.S. Zou, Phys. Rev. D 78, 074017 (2008). arXiv:0808.2683 [hep-ph]

    Article  ADS  Google Scholar 

  64. M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 83, 032003 (2011). arXiv:1012.5131 [hep-ex]

  65. M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 121(2), 022001 (2018). arXiv:1802.00583 [hep-ex]

  66. E. Oset, A. Ramos, Nucl. Phys. A 635, 99 (1998). arXiv:nucl-th/9711022

    Article  ADS  Google Scholar 

  67. J.A. Oller, U.-G. Meißner, Phys. Lett. B 500, 263 (2001). arXiv:hep-ph/0011146

    Article  ADS  Google Scholar 

  68. L. Roca, Phys. Rev. D 88, 014045 (2013). arXiv:1210.4742 [hep-ph]

    Article  ADS  Google Scholar 

  69. M. Bayar, V.R. Debastiani, Phys. Lett. B 775, 94 (2017). arXiv:1708.02764 [hep-ph]

    Article  ADS  Google Scholar 

  70. T. Sekihara, S. Kumano, Phys. Rev. D 92(3), 034010 (2015). arXiv:1409.2213 [hep-ph]

    Article  ADS  Google Scholar 

  71. S. Nussinov, T.N. Truong, Phys. Rev. Lett. 63, 1349 (1989). Erratum: [Phys. Rev. Lett. 63, 2002 (1989)]

  72. N.N. Achasov, V.N. Ivanchenko, Nucl. Phys. B 315, 465 (1989)

    Article  ADS  Google Scholar 

  73. J L Lucio Martinez, J. Pestieau, Phys. Rev. D 42, 3253 (1990)

    ADS  Google Scholar 

  74. F.E. Close, N. Isgur, S. Kumano, Nucl. Phys. B 389, 513 (1993). arXiv:hep-ph/9301253

    Article  ADS  Google Scholar 

  75. A. Bramon, R. Escribano, J .L .M. Lucio, M. Napsuciale, G. Pancheri, Phys. Lett. B 494, 221 (2000). arXiv:hep-ph/0008188

    Article  ADS  Google Scholar 

  76. A. Bramon, R. Escribano, J L Lucio Martinez, M. Napsuciale, Phys. Lett. B 517, 345 (2001). arXiv:hep-ph/0105179

    Article  ADS  Google Scholar 

  77. A. Bramon, R. Escribano, J .L .M. Lucio, M. Napsuciale, G. Pancheri, Eur. Phys. J. C 26, 253 (2002). arXiv:hep-ph/0204339

    Article  ADS  Google Scholar 

  78. J.A. Oller, Phys. Lett. B 426, 7 (1998). arXiv:hep-ph/9803214

    Article  ADS  Google Scholar 

  79. E. Marco, S. Hirenzaki, E. Oset, H. Toki, Phys. Lett. B 470, 20 (1999). arXiv:hep-ph/9903217

    Article  ADS  Google Scholar 

  80. J.E. Palomar, L. Roca, E. Oset, M J Vicente Vacas, Nucl. Phys. A 729, 743 (2003). arXiv:hep-ph/0306249

    Article  ADS  Google Scholar 

  81. M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 94(7), 072005 (2016). arXiv:1608.07393 [hep-ex]

  82. J.R. Peláez, G. Rios, Phys. Rev. Lett. 97, 242002 (2006). https://doi.org/10.1103/PhysRevLett.97.242002. arXiv:hep-ph/0610397

    Article  ADS  Google Scholar 

  83. J.R. Peláez, G. Ríos, Phys. Rev. D 82, 114002 (2010). https://doi.org/10.1103/PhysRevD.82.114002. arXiv:1010.6008 [hep-ph]

    Article  ADS  Google Scholar 

  84. F. Aceti, J.M. Dias, E. Oset, Eur. Phys. J. A 51(4), 48 (2015). arXiv:1501.06505 [hep-ph]

    Article  ADS  Google Scholar 

  85. T.A. Armstrong et al. [WA76 and Athens-Bari-Birmingham-CERN-College de France Collaborations], Z. Phys. C 52, 389 (1991)

  86. J.B. Gay et al. [Amsterdam-CERN-Nijmegen-Oxford Collaboration], Phys. Lett. B 63, 220 (1976)

  87. J.A. Oller, Nucl. Phys. A 714, 161 (2003). arXiv:hep-ph/0205121

    Article  ADS  Google Scholar 

  88. F. Klingl, N. Kaiser, W. Weise, Z. Phys. A 356, 193 (1996). arXiv:hep-ph/9607431

    Article  ADS  Google Scholar 

  89. U.-G. Meißner, Phys. Rep. 161, 213 (1988)

    Article  ADS  Google Scholar 

  90. A. Bramon, A. Grau, G. Pancheri, Phys. Lett. B 289, 97 (1992)

    Article  ADS  Google Scholar 

  91. L. Roca, J.E. Palomar, E. Oset, H.C. Chiang, Nucl. Phys. A 744, 127 (2004). arXiv:hep-ph/0405228

    Article  ADS  Google Scholar 

  92. J.J. Sakurai, Currents and Mesons (University of Chicago Press, Chicago, 1969)

    Google Scholar 

  93. M. Bando, T. Kugo, S. Uehara, K. Yamawaki, T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985)

    Article  ADS  Google Scholar 

  94. C.W. Xiao, E. Oset, Eur. Phys. J. A 49, 52 (2013). arXiv:1211.1862 [hep-ph]

    Article  ADS  Google Scholar 

  95. U.-G. Meißner, J.A. Oller, Nucl. Phys. A 679, 671 (2001). arXiv:hep-ph/0005253

    Article  ADS  Google Scholar 

  96. L. Micu, Nucl. Phys. B 10, 521 (1969)

    Article  ADS  Google Scholar 

  97. M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 92(5), 052003 (2015). Erratum: [Phys. Rev. D 93(3), 039906 (2016)]. arXiv:1506.00546 [hep-ex]

  98. M. Ablikim et al., Phys. Lett. B 642, 441 (2006). arXiv:hep-ex/0603048

    Article  ADS  Google Scholar 

  99. J. Becker et al. [Mark-III Collaboration], Phys. Rev. D 35, 2077 (1987)

  100. J.E. Augustin et al. [DM2 Collaboration], Z. Phys. C 36, 369 (1987)

  101. J.Z. Bai et al. [BES Collaboration], Phys. Rev. Lett. 76, 3502 (1996)

  102. M. Ablikim et al. [BESIII Collaboration], arXiv:1808.06946 [hep-ex]

  103. A. Martinez Torres, K.P. Khemchandani, F.S. Navarra, M. Nielsen, E. Oset, Phys. Lett. B 719, 388 (2013). arXiv:1210.6392 [hep-ph]

    Article  ADS  Google Scholar 

  104. J.J. Xie, E. Oset, Phys. Lett. B 753, 591 (2016). arXiv:1509.08099 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

CWX thanks E. Oset and Q. Wang for the useful discussions. This work is supported in part by the DFG and the NSFC through funds provided to the Sino-German CRC 110 “Symmetries and the Emergence of Structure in QCD”. JAO would like to thank partial financial support by the MINECO (Spain) and FEDER (EU) grant FPA2016-77313-P. The work of UGM was also supported by the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) (Grant No. 2018DM0034) and by VolkswagenStiftung (Grant No. 93562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. Xiao.

Additional information

Communicated by R. Rapp

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C.W., Meißner, UG. & Oller, J.A. Investigation of \(J/\psi \rightarrow \gamma \, \pi ^0 \eta (\pi ^+\pi ^-, \pi ^0\pi ^0)\) radiative decays including final-state interactions. Eur. Phys. J. A 56, 23 (2020). https://doi.org/10.1140/epja/s10050-020-00025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00025-y

Navigation