Skip to main content
Log in

Measurement of 139La(p,x) cross sections from 35–60 MeV by stacked-target activation

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A stacked-target of natural lanthanum foils (99.9119% 139La) was irradiated using a 60 MeV proton beam at the LBNL 88-Inch Cyclotron. 139La(p,x) cross sections are reported between 35–60 MeV for nine product radionuclides. The primary motivation for this measurement was the need to quantify the production of 134Ce. As a positron-emitting analogue of the promising medical radionuclide 225Ac, 134Ce is desirable for in vivo applications of bio-distribution assays for this emerging radio-pharmaceutical. The results of this measurement were compared to the nuclear model codes TALYS, EMPIRE and ALICE (using default parameters), which showed significant deviation from the measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The gamma-ray spectra and all other raw data created during this research are openly available at: https://doi.org/10.5281/zenodo.3599779. Upon publication, the experimentally determined cross sections will be uploaded to the EXFOR database.]

References

  1. F. Tárkányi, F. Ditrói, S. Takács, A. Hermanne, M. Baba, Appl. Radiat. Isot. 115, 262 (2016). https://doi.org/10.1016/j.apradiso.2016.07.003

    Article  Google Scholar 

  2. L. Bernstein, D. Brown, A. Hurst, J. Kelly, F. Kondev, E. Mccutchan, C. Nesaraja, R. Slaybaugh, A. Sonzogni (2015)

  3. N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva et al., Nucl. Data Sheets 120, 272 (2014). https://doi.org/10.1016/j.nds.2014.07.065

    Article  ADS  Google Scholar 

  4. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952). https://doi.org/10.1103/PhysRev.87.366

    Article  ADS  Google Scholar 

  5. R.A. Boll, D. Malkemus, S. Mirzadeh, Appl. Radiat. Isot. 62, 667 (2005). https://doi.org/10.1016/j.apradiso.2004.12.003

    Article  Google Scholar 

  6. A. Jain, R. Raut, J. Tuli, Nucl. Data Sheets 110, 1409 (2009). https://doi.org/10.1016/j.nds.2009.04.003

    Article  ADS  Google Scholar 

  7. A.K. Jain, S. Singh, S. Kumar, J.K. Tuli, Nucl. Data Sheets 108, 883 (2007). https://doi.org/10.1016/j.nds.2007.03.002

    Article  ADS  Google Scholar 

  8. F. Kondev, E. McCutchan, B. Singh, K. Banerjee, S. Bhattacharya, A. Chakraborty, S. Garg, N. Jovancevic, S. Kumar, S. Rathi et al., Nucl. Data Sheets 147, 382 (2018). https://doi.org/10.1016/j.nds.2018.01.002

    Article  ADS  Google Scholar 

  9. M. Basunia, Nucl. Data Sheets 108, 633 (2007). https://doi.org/10.1016/j.nds.2007.02.002

    Article  ADS  Google Scholar 

  10. J. Chen, F. Kondev, Nucl. Data Sheets 126, 373 (2015). https://doi.org/10.1016/j.nds.2015.05.003

    Article  ADS  Google Scholar 

  11. D.A. Mulford, D.A. Scheinberg, J.G. Jurcic, J. Nucl. Med. 46, 199S (2005)

    Google Scholar 

  12. C. Apostolidis, R. Molinet, G. Rasmussen, A. Morgenstern, Anal. Chem. 77, 6288 (2005). https://doi.org/10.1021/ac0580114

    Article  Google Scholar 

  13. A. Sonzogni, Nucl. Data Sheets 103, 1 (2004). https://doi.org/10.1016/j.nds.2004.11.001

    Article  ADS  Google Scholar 

  14. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012). https://doi.org/10.1016/j.nds.2012.11.002

    Article  ADS  Google Scholar 

  15. M. Herman, R. Capote, B. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108, 2655 (2007) (special Issue on Evaluations of Neutron Cross Sections) https://doi.org/10.1016/j.nds.2007.11.003

  16. S.A. Graves, P.A. Ellison, T.E. Barnhart, H.F. Valdovinos, E.R. Birnbaum, F.M. Nortier, R.J. Nickles, J.W. Engle, Nucl. Instrum. Methods Phys. Res., Sect. B 386, 44 (2016). https://doi.org/10.1016/j.nimb.2016.09.018

  17. A.S. Voyles, L.A. Bernstein, E.R. Birnbaum, J.W. Engle, S.A. Graves, T. Kawano, A.M. Lewis, F.M. Nortier, Nucl. Instrum. Methods Phys. Res., Sect. B 429, 53 (2018). https://doi.org/10.1016/j.nimb.2018.05.028

  18. IAEA, International Atomic Energy Agency, Vienna, Austria (2001)

  19. J.F. Ziegler, M. Ziegler, J. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. Mater. Atoms 268, 1818 (2010) (19th International Conference on Ion Beam Analysis) https://doi.org/10.1016/j.nimb.2010.02.091

  20. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen (2010)

  21. M.K. Covo, R. Albright, B. Ninemire, M. Johnson, A. Hodgkinson, T. Loew, J. Benitez, D. Todd, D. Xie, T. Perry et al., Measurement 127, 580 (2018). https://doi.org/10.1016/j.measurement.2017.10.018

    Article  Google Scholar 

  22. B. Singh, A.A. Rodionov, Y.L. Khazov, Nucl. Data Sheets 109, 517 (2008). https://doi.org/10.1016/j.nds.2008.02.001

    Article  ADS  Google Scholar 

  23. J.T. Morrell, NPAT: Nuclear physics analysis tools (2019) (Online) https://jtmorrell.github.io/npat/build/html/index.html. Accessed 25 June 2019

  24. M.R. Bhat, Evaluated Nuclear Structure Data File (ENSDF). In Nuclear Data for Science and Technology, edited by S.M. Qaim (Springer Berlin Heidelberg, Berlin, Heidelberg, 1992), pp. 817–821, ISBN 978-3-642-58113-7

  25. G. Knoll, Radiation detection and measurement (Wiley, Hoboken, 1999)

    Google Scholar 

  26. H. Bateman, Proc. Campridge Philos. Soc. 15, 423 (1910). https://doi.org/10.12691/ijp-4-2-3

    Article  Google Scholar 

  27. A. Hermanne, A.V. Ignatyuk, R. Capote, B.V. Carlson, J.W. Engle, M.A. Kellett, T. Kibédi, G. Kim, F.G. Kondev, M. Hussain et al., Nucl. Data Sheets 148, 338 (2018). https://doi.org/10.1016/j.nds.2018.02.009

    Article  ADS  Google Scholar 

  28. J.T. Goorley, M.R. James et al., Los Alamos Rep. LA-UR-13-22934 180, 298 (2013). https://doi.org/10.13182/NT11-135

  29. M. Blann, J. Bisplinghoff (1982)

  30. F. Tárkányi, A. Hermanne, F. Ditrói, S. Takács, J. Radioanal. Nucl. Chem. 312, 691 (2017). https://doi.org/10.1007/s10967-017-5253-7

    Article  Google Scholar 

  31. R. Alt, G. Beyer, V. Morozov, H. Musiol, T. Numinov, H. Tyrroff, H. Strusny, Z. Usmanova, V. Fominykh, H. Fuya et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 744 (1972)

  32. R. Ma, E.S. Paul, D.B. Fossan, Y. Liang, N. Xu, R. Wadsworth, I. Jenkins, P.J. Nolan, Phys. Rev. C 41, 2624 (1990)

    Article  ADS  Google Scholar 

  33. H.C. Jain, S. Lakshmi, P.K. Joshi, Identification Of Chiral Bands In \(^{135}\)Ce (In Proc, Nuclei at the Limits, 2005)

  34. D. Brink, Nucl. Phys. 4, 215 (1957). https://doi.org/10.1016/0029-5582(87)90021-6

    Article  Google Scholar 

  35. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

    Article  ADS  Google Scholar 

  36. Y. Khazov, A. Rodionov, F. Kondev, Nucl. Data Sheets 112, 855 (2011). https://doi.org/10.1016/j.nds.2011.03.001

    Article  ADS  Google Scholar 

  37. A. Grütter, Nucl. Phys. A 383, 98 (1982). https://doi.org/10.1016/0375-9474(82)90078-1

    Article  ADS  Google Scholar 

  38. V. Aleksandrov, M. Semyonova, V. Semyonov, Atom. Energ. 62, 411 (1987)

    Google Scholar 

  39. S. Mills, G. Steyn, F. Nortier, Int. J. Radiat. Appl. Instrum. Part A. Appl. Radiat. Isot. 43, 1019 (1992) https://doi.org/10.1016/0883-2889(92)90221-Y

  40. R. Michel, R. Bodemann, H. Busemann, R. Daunke, M. Gloris, H.J. Lange, B. Klug, A. Krins, I. Leya, M. Lp̈ke et al., Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 129, 153 (1997) https://doi.org/10.1016/S0168-583X(97)00213-9

  41. M. Shahid, K. Kim, H. Naik, M. Zaman, S.C. Yang, G. Kim, Nucl. Instrum. Methods Phys. Res., Sect. B 342, 305 (2015). https://doi.org/10.1016/j.nimb.2014.10.019

  42. E. Garrido, C. Duchemin, A. Guertin, F. Haddad, N. Michel, V. Métivier, Nucl. Instrum. Methods Phys. Res., Sect. B 383, 191 (2016). https://doi.org/10.1016/j.nimb.2016.07.011

  43. E. Browne, J. Tuli, Nucl. Data Sheets 108, 2173 (2007). https://doi.org/10.1016/j.nds.2007.09.002

    Article  ADS  Google Scholar 

  44. P.K. Joshi, B. Singh, S. Singh, A.K. Jain, Nucl. Data Sheets 138, 1 (2016). https://doi.org/10.1016/j.nds.2016.11.001

    Article  ADS  Google Scholar 

  45. Y. Khazov, A. Rodionov, S. Sakharov, B. Singh, Nucl. Data Sheets 104, 497 (2005). https://doi.org/10.1016/j.nds.2005.03.001

    Article  ADS  Google Scholar 

  46. K. Zuber, B. Singh, Nucl. Data Sheets 125, 1 (2015). https://doi.org/10.1016/j.nds.2015.02.001

    Article  ADS  Google Scholar 

  47. A.L. Nichols, B. Singh, J.K. Tuli, Nucl. Data Sheets 113, 973 (2012). https://doi.org/10.1016/j.nds.2012.04.002

    Article  ADS  Google Scholar 

  48. B. Erjun, H. Junde, Nucl. Data Sheets 92, 147 (2001). https://doi.org/10.1006/ndsh.2001.0002

    Article  ADS  Google Scholar 

  49. C.D. Nesaraja, S.D. Geraedts, B. Singh, Nucl. Data Sheets 111, 897 (2010). https://doi.org/10.1016/j.nds.2010.03.003

    Article  ADS  Google Scholar 

  50. M.S. Basunia, Nucl. Data Sheets 127, 69 (2015). https://doi.org/10.1016/j.nds.2015.07.002

    Article  ADS  Google Scholar 

  51. R. Firestone, Nucl. Data Sheets 108, 2319 (2007). https://doi.org/10.1016/j.nds.2007.10.001

    Article  ADS  Google Scholar 

  52. M.S. Basunia, J.T. Morrell, M.S. Uddin, A.S. Voyles et al. (2019) (to be published)

Download references

Acknowledgements

We wish to acknowledge our thanks to the operators of the 88-Inch Cyclotron, Brien Ninemire, Nick Brickner, Tom Gimpel and Scott Small, for their efforts in setting a new “high-water mark” for the maximum proton energy extracted from the machine as well as for their assistance and support. We would also like to thank the members of the LBNL Nuclear Data group and the Nuclear Engineering department at UC Berkeley, who contributed their time and knowledge towards the review of this experiment. This work has been performed under the auspices of the U.S. Department of Energy by Lawrence Berkeley National Laboratory under contract No. LAB16-1588 NSD. This research is supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Nuclear Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan T. Morrell.

Additional information

Communicated by R. V. F. Janssens

Appendices

Relevant nuclear data [13, 22, 36, 43,44,45,46,47,48,49,50,51,52]

Isotope

\(\gamma \) Energy (keV)

\(I_{\gamma }\) (%)

\(T_{1/2}\)

134Ce

3.16 (4) d

134La

604.721 (2)

5.04 (20)

6.45 (16) m

135Ce

265.56 (2)

41.8 (14)

17.7 (3) h

137mCe

254.29 (5)

11.1 (4)

34.4 (3) h

137gCe

447.15 (8)

1.22 (3)

9.0 (3) h

139gCe

165.8575 (11)

79.95 (6)

137.64 (2) d

135La

480.51 (2)

1.52 (24)

19.5 (2) h

133mBa

275.925 (7)

17.69 (25)

38.93 (1) h

133gBa

356.0129 (7)

62.05 (19)

10.551 (11) y

132Cs

667.714 (2)

97.59 (9)

6.480 (6) d

61Cu

282.956 (10)

12.2 (22)

3.339 (8) h

62Zn

596.56 (13)

26.0 (20)

9.193 (15) h

63Zn

669.62 (5)

8.2 (3)

38.47 (5) m

58Co

810.7593 (20)

99.45 (1)

70.86 (6) d

22Na

1274.537 (7)

99.940 (14)

2.6018 (22) y

24Na

1368.626 (5)

99.9936 (15)

14.997 (12) h

Stack design

Foil Id

Compound

\(\varDelta x\) (mm)

\(\rho \varDelta x\) (mg/\(\hbox {cm}^2\))

SS3

316 SS

0.13

\(100.48 \pm 0.46\)

La01

La

0.0275

\(14.59 \pm 0.69\)

Al01

Al

0.027

\(6.58 \pm 0.02\)

Cu01

Cu

0.029

\(22.13 \pm 0.07\)

E1

Al

0.254

\(68.53 \pm 5.08\)

La02

La

0.0278

\(15.55 \pm 0.71\)

Al02

Al

0.0278

\(6.67 \pm 0.12\)

Cu02

Cu

0.0293

\(22.23 \pm 0.44\)

E2

Al

0.254

\(68.53 \pm 5.08\)

La03

La

0.0315

\(15.12 \pm 0.83\)

Al03

Al

0.027

\(6.7 \pm 0.03\)

Cu03

Cu

0.031

\(22.24 \pm 0.07\)

E3

Al

0.254

\(68.53 \pm 5.08\)

La04

La

0.0288

\(14.95 \pm 0.66\)

Al04

Al

0.027

\(6.68 \pm 0.03\)

Cu04

Cu

0.0317

\(22.49 \pm 0.42\)

E4

Al

0.254

\(68.53 \pm 5.08\)

La05

La

0.027

\(15.07 \pm 0.65\)

Al05

Al

0.027

\(6.64 \pm 0.01\)

Cu05

Cu

0.0313

\(22.39 \pm 0.42\)

E5

Al

0.254

\(68.53 \pm 5.08\)

La06

La

0.026

\(14.32 \pm 0.78\)

Al06

Al

0.0278

\(6.66 \pm 0.23\)

Cu06

Cu

0.031

\(22.22 \pm 0.05\)

E6+E7

Al

0.508

\(137.06 \pm 10.16\)

La07

La

0.0258

\(14.21 \pm 0.29\)

Al07

Al

0.0273

\(6.64 \pm 0.12\)

Cu07

Cu

0.031

\(22.4 \pm 0.05\)

E8+E9

Al

0.508

\(137.06 \pm 10.16\)

La08

La

0.0283

\(15.64 \pm 0.28\)

Al08

Al

0.0273

\(6.72 \pm 0.13\)

Cu08

Cu

0.032

\(22.16 \pm 1.2\)

E10+E11

Al

0.508

\(137.06 \pm 10.16\)

La09

La

0.0268

\(12.67 \pm 0.51\)

Al09

Al

0.0275

\(6.65 \pm 0.14\)

Cu09

Cu

0.031

\(22.2 \pm 0.72\)

E12+E13

Al

0.508

\(137.06 \pm 10.16\)

La10

La

0.0278

\(16.14 \pm 0.3\)

Al10

Al

0.027

\(6.73 \pm 0.02\)

Cu10

Cu

0.031

\(22.5 \pm 0.05\)

SS4

316 SS

0.13

\(101.26 \pm 0.79\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrell, J.T., Voyles, A.S., Basunia, M.S. et al. Measurement of 139La(p,x) cross sections from 35–60 MeV by stacked-target activation. Eur. Phys. J. A 56, 13 (2020). https://doi.org/10.1140/epja/s10050-019-00010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00010-0

Navigation