Skip to main content
Log in

Triplet lifetime in gaseous argon

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

MiniCLEAN is a single-phase liquid argon dark matter experiment. During the initial cooling phase, impurities within the cold gas (\( < 140\) K) were monitored by measuring the scintillation light triplet lifetime, and ultimately a triplet lifetime of \( 3.480 \pm 0.001 (stat.) \pm 0.064 (sys.)\) μs was obtained, indicating ultra-pure argon. This is the longest argon triplet time constant ever reported. The effect of quenching of separate components of the scintillation light is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boris M. Smirnov, Sov. Phys. Usp. 26, 31 (1983)

    Article  ADS  Google Scholar 

  2. N. Thonnard, G.S. Hurst, Phys. Rev. A 5, 1110 (1972)

    Article  ADS  Google Scholar 

  3. R.E. Gleason, T.D. Bonifield, J.W. Keto, G.K. Walters, J. Chem. Phys. 66, 1589 (1977)

    Article  ADS  Google Scholar 

  4. P. Millet, A. Birot, H. Brunet, H. Dijolis, J. Galy, Y. Salamero, J. Phys. B 15, 2935 (1982)

    Article  ADS  Google Scholar 

  5. K. Mavrokoridis, R.G. Calland, J. Coleman, P.K. Lightfoot, N. McCauley, K.J. McCormick, C. Touramanis, J. Instrum. 6, P08003 (2011)

    Article  Google Scholar 

  6. M.J. Carvalho, G. Klein, J. Lumin. 18, 487 (1979)

    Article  Google Scholar 

  7. T. Suemoto, Y. Kondo, H. Kanzaki, Phys. Lett. A 61, 131 (1977)

    Article  ADS  Google Scholar 

  8. C. Amsler, V. Boccone, A. Büchler, R. Chandrasekharan, C. Regenfus, J. Rochet, J. Instrum. 3, P02001 (2008)

    Article  Google Scholar 

  9. P. Moutard, P. Laporte, J.L. Subtil, N. Damany, H. Damany, J. Chem. Phys. 87, 4576 (1987)

    Article  ADS  Google Scholar 

  10. J.W. Keto, R.E. Gleason, G.K. Walters, Phys. Rev. Lett. 33, 1365 (1974)

    Article  ADS  Google Scholar 

  11. Takefumi Oka, Masuhiro Kogoma, Masashi Imamura, Shigeyoshi Arai, Tsutomu Watanabe, J. Chem. Phys. 70, 3384 (1979)

    Article  ADS  Google Scholar 

  12. F. Marchal, N. Merbahi, G. Ledru, J.P. Gardou, N. Sewraj, J. Phys. B 42, 015201 (2009)

    Article  ADS  Google Scholar 

  13. Akira Hitachi, Tan Takahashi, Nobutaka Funayama, Kimiaki Masuda, Jun Kikuchi, Tadayoshi Doke, Phys. Rev. B 27, 5279 (1983)

    Article  ADS  Google Scholar 

  14. L. Goubert, G.D. Billing, E. Desoppere, W. Wieme, Chem. Phys. Lett. 219, 360 (1994)

    Article  ADS  Google Scholar 

  15. J.E. Velazco, J.H. Kolts, D.W. Setser, J. Chem. Phys. 69, 4357 (1978)

    Article  ADS  Google Scholar 

  16. W. Krötz, A. Ulrich, B. Busch, G. Ribitzki, J. Wieser, Phys. Rev. A 43, 6089 (1991)

    Article  ADS  Google Scholar 

  17. A.Kh. Amirov, O.V. Korshunov, V.F. Chinnov, J. Phys. B 27, 1753 (1994)

    Article  ADS  Google Scholar 

  18. P. Grimm, F.-J. Hambsch, M. Mutterer, J.P. Theobald, S. Kubota, Nucl. Instrum. Methods Phys. Res. Sect. A 262, 394 (1987)

    Article  ADS  Google Scholar 

  19. J. Wieser, A. Ulrich, A. Fedenev, M. Salvermoser, Opt. Commun. 173, 233 (2000)

    Article  ADS  Google Scholar 

  20. R. Acciarri et al., J. Instrum. 5, P06003 (2010)

    Google Scholar 

  21. R. Acciarri et al., J. Instrum. 5, P05003 (2010)

    Google Scholar 

  22. JuiJen Wang, PhD Thesis, (2017)

  23. RAT User’s Guide, https://rat.readthedocs.io/en/latest/ technical report

  24. T. Bolton, Nucl. Phys. B Proc. Suppl. 149, 166 (2005)

    Article  ADS  Google Scholar 

  25. K. Rielage et al., Phys. Proc. 61, 144 (2015)

    Article  ADS  Google Scholar 

  26. P.-A. Amaudruz et al., Phys. Rev. Lett. 121, 071801 (2018)

    Article  ADS  Google Scholar 

  27. M.C. Chen, Nucl. Phys. B Proc. Suppl. 145, 65 (2005)

    Article  ADS  Google Scholar 

  28. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  29. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  30. ROOT User Guides and Manuals

  31. The SNO Collaboration, The SNOMAN Users Manual version 5.02 ed

  32. M. Akashi-Ronquest et al., Astropart. Phys. 65, 40 (2015)

    Article  ADS  Google Scholar 

  33. Thomas Caldwell, technical report, MiniCLEAN internal report (2012)

  34. D.W. Loeb, MonChao Chen, R.F. Firestone, J. Chem. Phys. 74, 3270 (1981)

    Article  ADS  Google Scholar 

  35. E. Segreto, Phys. Rev. C 91, 035503 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jui-Jen Wang.

Additional information

Communicated by C. Broggini

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data are being stored at the PNNL cluster and all data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akashi-Ronquest, M., Bacon, A., Benson, C. et al. Triplet lifetime in gaseous argon. Eur. Phys. J. A 55, 176 (2019). https://doi.org/10.1140/epja/i2019-12867-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12867-2

Navigation