Skip to main content
Log in

Theoretical predictions for \(\alpha\)-decay properties of 283-339Og using a shell-effect induced generalized liquid-drop model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The \( \alpha\)-decay half-lives of synthesized superheavy nuclei (SHN) from seaborgium to oganesson are calculated by employing the generalized liquid-drop model (GLDM), the Royer formula and the universal decay law (UDL) with experimental \( \alpha\)-decay energies \(Q_{\alpha}\). For the GLDM, we consider the shell correction. The agreement between the experimental data and the calculations indicates that all the methods we used are successful to reproduce \(\alpha\)-decay half-lives of known SHN. The decay-modes of known nuclei on the 294Og decay-chain are also consistent with the experiments. For the unknown nuclei, the \( \alpha\)-decay half-lives have been predicted by inputting \( Q_{\alpha}\) values extracted from the newest Weizsäcker-Skyrme-4 (WS4) model. In the GLDM with shell correction, we adopt the constant \( \alpha\)-preformation factor \( P_{\alpha}\) as well as \( P_{\alpha}\) extracted by Cluster Formation Model (CFM). To calculate CFM \( P_{\alpha}\) values, we use FRDM binding energies and WS4 mass excess values. The relationship of \( P_{\alpha}\) and \( Q_{\alpha}\) shows that 294, 296, 314, 316, 320Og isotopes are relatively stable. The competition between \( \alpha\)-decay and spontaneous fission is discussed in detail for 283-339Og isotopes. The decay-chains of 290-300Og have also been presented. Since the \( \alpha\)-decay half-lives of 283-303Og isotopes are obviously lower than their spontaneous fission half-lives by more than 6 orders, these isotopes would mainly have \( \alpha\)-decay. The 306-334Og isotopes may undergo spontaneous fission. The nuclei 304, 305Og would have both \( \alpha\)-decay and spontaneous fission. By the shell-effect included GLDM with CFM \( P_{\alpha}\), we predict 295Og undergoes \( \alpha\)-decay and \( T_{\alpha}^{1/2} = 0.37\) ms. The 296Og is also \( \alpha\)-decay and has \( T_{\alpha}^{1/2} = 0.40\) ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sobiczewski, F.A. Gareev, B.N. Kalinkin, Phys. Lett. 22, 500 (1966)

    Article  ADS  Google Scholar 

  2. V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967)

    Article  ADS  Google Scholar 

  3. S. Hofmann, Rep. Prog. Phys. 61, 639 (1998)

    Article  ADS  Google Scholar 

  4. S. Hofmann, G. Munzenberg, Rev. Mod. Phys. 72, 733 (2000)

    Article  ADS  Google Scholar 

  5. Yu.Ts. Oganessian, J. Phys. G: Nucl. Part. Phys. 34, R165 (2007)

    Article  Google Scholar 

  6. S.A. Giuliani, Z. Matheson, W. Nazarewicz, E. Olsen, P.-G. Reinhard et al., Rev. Mod. Phys. 91, 011001 (2019)

    Article  ADS  Google Scholar 

  7. P. Möller, J.R. Nix, J. Phys. G: Nucl. Part. Phys. 20, 1681 (1994)

    Article  ADS  Google Scholar 

  8. S. Ćwiok, J. Dobaczewski, P.H. Heenen, P. Magierski, W. Nazarewicz, Nucl. Phys. A 611, 211 (1996)

    Article  ADS  Google Scholar 

  9. K. Rutz, M. Bender, T. Bürvenich, T. Schilling, P.-G. Reinhard et al., Phys. Rev. C 56, 238 (1997)

    Article  ADS  Google Scholar 

  10. A.T. Kruppa, M. Bender, W. Nazarewicz, P.-G. Reinhard, T. Vertse et al., Phys. Rev. C 61, 034313 (2000)

    Article  ADS  Google Scholar 

  11. S. Hofmann, Lect. Notes Phys. 764, 203 (2009)

    Article  ADS  Google Scholar 

  12. I. Petermann, K. Langanke, G. Martínez-Pinedo, I.V. Panov, P.-G. Reinhard et al., Eur. Phys. J. A 48, 122 (2012)

    Article  ADS  Google Scholar 

  13. S. Goriely, N. Chamel, J.M. Pearson, Phys. Rev. C 88, 061302 (2013)

    Article  ADS  Google Scholar 

  14. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov, F.S. Abdullin, A.N. Polyakov et al., Phys. Rev. C 74, 044602 (2006)

    Article  ADS  Google Scholar 

  15. Y.T. Oganessian, F.S. Abdullin, C. Alexander, J. Binder, R.A. Boll et al., Phys. Rev. Lett. 109, 162501 (2012)

    Article  ADS  Google Scholar 

  16. L. Stavsetra, K.E. Gregorich, J. Dvorak, P.A. Ellison, I. Dragojevic et al., Phys. Rev. Lett. 103, 132502 (2009)

    Article  ADS  Google Scholar 

  17. P.A. Ellison, K.E. Gregorich, J.S. Berryman, D.L. Bleuel, R.M. Clark et al., Phys. Rev. Lett. 105, 182701 (2010)

    Article  ADS  Google Scholar 

  18. N.T. Brewer, V.K. Utyonkov, K.P. Rykaczewski, Y.T. Oganessian, F.S. Abdullin et al., Phys. Rev. C 98, 024317 (2018)

    Article  ADS  Google Scholar 

  19. G.Z. Gamov, Z. Phys. 51, 204 (1928)

    Article  ADS  Google Scholar 

  20. R.W. Gurney, E.U. Condon, Nature (London) 122, 439 (1928)

    Article  ADS  Google Scholar 

  21. G. Royer, B. Remaud, Nucl. Phys. A 444, 477 (1985)

    Article  ADS  Google Scholar 

  22. G. Royer, K. Zbiri, C. Bonilla, Nucl. Phys. A 730, 355 (2004)

    Article  ADS  Google Scholar 

  23. G. Royer, Nucl. Phys. A 848, 279 (2010)

    Article  ADS  Google Scholar 

  24. K.P. Santhosh, A. Joseph, Pramana 62, 957 (2004)

    Article  ADS  Google Scholar 

  25. K.P. Santhosh, B. Priyanka, Eur. Phys. J. A 49, 150 (2013)

    Article  ADS  Google Scholar 

  26. J.M. Dong, W. Zuo, J.Z. Gu, Y.Z. Wang, B.B. Peng, Phys. Rev. C 81, 064309 (2010)

    Article  ADS  Google Scholar 

  27. C. Xu, Z.Z. Ren, Phys. Rev. C 74, 014304 (2006)

    Article  ADS  Google Scholar 

  28. V.E. Viola, G.T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966)

    Article  Google Scholar 

  29. A. Sobiczewski, Z. Patyk, S. Cwiok, Phys. Lett. B 224, 1 (1989)

    Article  ADS  Google Scholar 

  30. B.A. Brown, Phys. Rev. C 46, 811 (1992)

    Article  ADS  Google Scholar 

  31. G. Royer, J. Phys. G 26, 1149 (2000)

    Article  ADS  Google Scholar 

  32. H. Geiger, J.M. Nuttall, Philos. Mag. 22, 613 (1911)

    Article  Google Scholar 

  33. Monika Patial, R.J. Liotta, R. Wyss, Phys. Rev. C 93, 054326 (2016)

    Article  ADS  Google Scholar 

  34. D.D. Ni, Z.Z. Ren, Phys. Rev. C 81, 064318 (2010)

    Article  ADS  Google Scholar 

  35. C. Xu, G. Röpke, P. Schuck, Z. Ren, Y. Funaki et al., Phys. Rev. C 95, 061306 (2017)

    Article  ADS  Google Scholar 

  36. C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, Phys. Rev. Lett. 103, 072501 (2009)

    Article  ADS  Google Scholar 

  37. C. Qi, F.R. Xu, R.J. Liotta, R. Wyss, M.Y. Zhang, C. Asawatangtrakuldee, D. Hu, Phys. Rev. C 80, 044326 (2009)

    Article  ADS  Google Scholar 

  38. D. Ni, Z. Ren, Phys. Rev. C 81, 024315 (2010)

    Article  ADS  Google Scholar 

  39. S.M.S. Ahmed, R. Yahaya, S. Radiman, M.S. Yasir, J. Phys. G: Nucl. Part. Phys. 40, 065105 (2013)

    Article  ADS  Google Scholar 

  40. D. Deng, Z. Ren, D. Ni, Y. Qian, J. Phys. G: Nucl. Part. Phys. 42, 075106 (2015)

    Article  ADS  Google Scholar 

  41. D. Deng, Z. Ren, Phys. Rev. C 93, 044326 (2016)

    Article  ADS  Google Scholar 

  42. S.M.S. Ahmed, Nucl. Phys. A 962, 103 (2017)

    Article  ADS  Google Scholar 

  43. N. Wang, M. Liu, X. Wu, J. Meng, Phys. Lett. B 734, 215 (2014)

    Article  ADS  Google Scholar 

  44. K.P. Santhosh, C. Nithya, Phys. Rev. C 94, 054621 (2016)

    Article  ADS  Google Scholar 

  45. X.J. Bao, S.Q. Guo, H.F. Zhang, J.Q. Li, Phys. Rev. C 95, 034323 (2017)

    Article  ADS  Google Scholar 

  46. H.F. Zhang, G. Royer, J.Q. Li, Phys. Rev. C 84, 027303 (2011)

    Article  ADS  Google Scholar 

  47. W.D. Myers, Droplet Model of Atomic Nuclei (Plenum, New York, 1977)

  48. V.M. Strutinsky, F.A. Ivanjuk, Nucl. Phys. A 255, 405 (1975)

    Article  ADS  Google Scholar 

  49. N. Wang, M. Liu, X.Z. Wu, Phys. Rev. C 81, 044322 (2010)

    Article  ADS  Google Scholar 

  50. W. Swiatecki, Phys. Rev. 100, 937 (1955)

    Article  ADS  Google Scholar 

  51. C. Xu, Z.Z. Ren, Y.Q. Guo, Phys. Rev. C 78, 044329 (2008)

    Article  ADS  Google Scholar 

  52. K.P. Santhosh, R.K. Biju, S. Sabina, Nucl. Phys. A 832, 220 (2010)

    Article  ADS  Google Scholar 

  53. P. Möller, A.J. Sierk a, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109-110, 1 (2016)

    Article  ADS  Google Scholar 

  54. Yu.Ts. Oganessian, A. Sobiczewski, G.M. Ter-Akopian, Phys. Scr. 92, 023003 (2017)

    Article  ADS  Google Scholar 

  55. G. Audi, F.G. Kondev, Meng Wang, W.J. Huang, S. Naimi, Chin. Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

  56. V.K. Utyonkov, N.T. Brewer, Yu.Ts. Oganessian, K.P. Rykaczewski, F.Sh. Abdullin et al., Phys. Rev. C 97, 014320 (2018)

    Article  ADS  Google Scholar 

  57. M. Ismail, A. Adel, Phys. Rev. C 86, 014616 (2012)

    Article  ADS  Google Scholar 

  58. M. Ismail, A. Adel, Phys. Rev. C 97, 044301 (2018)

    Article  ADS  Google Scholar 

  59. Y.Z. Wang, S.J. Wang, Z.Y. Hou, J.Z. Gu, Phys. Rev. C 92, 064301 (2015)

    Article  ADS  Google Scholar 

  60. T.L. Zhao, X.J. Bao, Phys. Rev. C 98, 064307 (2018)

    Article  ADS  Google Scholar 

  61. Z.S. Ge, C. Li, J.J. Li, G. Zhang, B. Li et al., Phys. Rev. C 98, 034312 (2018)

    Article  ADS  Google Scholar 

  62. V.K. Utyonkov, N.T. Brewer, Yu.Ts. Oganessian, K.P. Rykaczewski, F.Sh. Abdullin et al., Phys. Rev. C 92, 034609 (2015)

    Article  ADS  Google Scholar 

  63. W.M. Seif, Hisham Anwer, A.R. Abdulghany, Ann. Phys. 401, 149 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Shou Zhang.

Additional information

Communicated by F. Gulminelli

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this study are contained in this published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Z., Zhang, G., Cheng, S. et al. Theoretical predictions for \(\alpha\)-decay properties of 283-339Og using a shell-effect induced generalized liquid-drop model. Eur. Phys. J. A 55, 166 (2019). https://doi.org/10.1140/epja/i2019-12864-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12864-5

Navigation