Skip to main content
Log in

Isospin asymmetry of the pseudospin symmetry in nuclear resonant states

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The role of Coulomb and \( \rho\) potentials in the asymmetry of the neutron and proton pseudospin splittings in nuclear resonant states are investigated. To this end, energies and widths of single-particle resonant states in the Sn isotopes are determined within the framework of relativistic mean-field theory combined with a method based on the analytic continuation of the coupling-constant method. We study the effect of these potentials on the energy splittings and widths splittings of the neutron and proton pseudospin partners in correlation with the mass number. Compared with the effect of the Coulomb potential, the \( \rho\) potential gives the main contribution to the isospin asymmetry of the pseudospin energy splittings and width splittings in the resonant states except for the proton rich nuclei. The pseudospin energy symmetry and width symmetry are not always better realized for neutrons than for protons in the resonant states. The Coulomb potential and the \( \rho\) potential always act in an opposite role in influencing the isospin asymmetry of the pseudospin symmetry in the resonant states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.T. Hecht, A. Adler, Nucl. Phys. A 137, 129 (1969)

    Article  ADS  Google Scholar 

  2. A. Arima, M. Harvey, K. Shimizu, Phys. Lett. B 30, 517 (1969)

    Article  ADS  Google Scholar 

  3. J.N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997)

    Article  ADS  Google Scholar 

  4. J. Meng, K. Sugawara-Tanabe, S. Yamaji, P. Ring, A. Arima, Phys. Rev. C 58, R628 (1998)

    Article  ADS  Google Scholar 

  5. J. Meng, K. Sugawara-Tanabe, S. Yamaji, A. Arima, Phys. Rev. C 59, 154 (1999)

    Article  ADS  Google Scholar 

  6. J.Y. Guo, X.Z. Fang, Eur. Phys. J. A 45, 179 (2010)

    Article  ADS  Google Scholar 

  7. Y.W. Sun, Y. Liu, S.W. Chen, Q. Liu, J.Y. Guo, Eur. Phys. J. A 48, 18 (2012)

    Article  ADS  Google Scholar 

  8. P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino, M. Chiapparini, Phys. Rev. Lett. 86, 5015 (2001)

    Article  ADS  Google Scholar 

  9. R. Lisboa, M. Malheiro, P. Alberto, Phys. Rev. C 67, 054305 (2003)

    Article  ADS  Google Scholar 

  10. J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996)

    Article  ADS  Google Scholar 

  11. J. Meng, P. Ring, Phys. Rev. Lett. 80, 460 (1998)

    Article  ADS  Google Scholar 

  12. N. Sandulescu, L.S. Geng, H. Toki, G.C. Hillhouse, Phys. Rev. C 68, 054323 (2003)

    Article  ADS  Google Scholar 

  13. L.G. Cao, Z.Y. Ma, Phys. Rev. C 66, 024311 (2002)

    Article  ADS  Google Scholar 

  14. S.S. Zhang, J. Meng, S.G. Zhou, G.C. Hillhouse, Phys. Rev. C 70, 034308 (2004)

    Article  ADS  Google Scholar 

  15. S.S. Zhang, W. Zhang, S.G. Zhou, J. Meng, Eur. Phys. J. A 32, 43 (2007)

    Article  ADS  Google Scholar 

  16. L. Zhang, S.G. Zhou, J. Meng, E.G. Zhao, Phys. Rev. C 77, 014312 (2008)

    Article  ADS  Google Scholar 

  17. J.Y. Guo, X.Z. Fang, P. Jiao, J. Wang, B.M. Yao, Phys. Rev. C 82, 034318 (2010)

    Article  ADS  Google Scholar 

  18. Q. Liu, J.Y. Guo, Z.M. Liu, S.W. Chen, B.M. Yao, Phys. Rev. C 86, 054312 (2012)

    Article  ADS  Google Scholar 

  19. X.X. Shi, M. Shi, Z.M. Liu, T.H. Heng, J.Y. Guo, Phys. Rev. C 94, 024302 (2016)

    Article  ADS  Google Scholar 

  20. T.T. Sun, Z.M. Liu, S.Q. Zhang, J. Phys. G 43, 045107 (2016)

    Article  ADS  Google Scholar 

  21. B.N. Lu, E.G. Zhao, S.G. Zhou, Phys. Rev. Lett. 109, 072501 (2012)

    Article  ADS  Google Scholar 

  22. N. Li, M. Shi, J.Y. Guo, Z.M. Liu, H.Z. Liang, Phys. Rev. Lett. 117, 062502 (2016)

    Article  ADS  Google Scholar 

  23. J.Y. Guo, X.Z. Fang, Phys. Rev. C 74, 024320 (2006)

    Article  ADS  Google Scholar 

  24. J.Y. Guo, R.D. Wang, X.Z. Fang, Phys. Rev. C 72, 054319 (2005)

    Article  ADS  Google Scholar 

  25. B.N. Lu, E.G. Zhao, S.G. Zhou, Phys. Rev. C 88, 024323 (2013)

    Article  ADS  Google Scholar 

  26. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997)

    Article  ADS  Google Scholar 

  27. V.I. Kukulin, V.M. Krasnopolsky, J. Horćek, Theory of Resonances: Principles and Applications (Kluwer Academic, Dordrecht, 1989)

  28. M. Chiapparini, A. Delfino, M. Malheiro, A. Gattone, Z. Phys. A 357, 47 (1997)

    Article  ADS  Google Scholar 

  29. Q. Xu, Eur. Phys. J. A 51, 81 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Xu.

Additional information

Communicated by M. Caprio

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author's comment: My manuscript has no associated data or the data will not be deposited because all data generated during this study are contained in this published article.]

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q. Isospin asymmetry of the pseudospin symmetry in nuclear resonant states. Eur. Phys. J. A 55, 54 (2019). https://doi.org/10.1140/epja/i2019-12725-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12725-3

Navigation