Skip to main content
Log in

\(\rho^{0} - \omega\) mixing in the presence of a weak magnetic field

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We calculate the momentum dependence of the \(\rho^{0}-\omega\) mixing amplitude in vacuum with vector-nucleon-nucleon interaction in presence of a constant homogeneous weak background magnetic field. The mixing amplitude is generated by the nucleon-nucleon (NN) interaction and is thus driven by the neutron-proton mass difference in addition to the constant magnetic field. We find a significant effect of the magnetic field on the mixing amplitude. We also calculate the charge symmetry violating (CSV) NN potential induced by the magnetic field dependent mixing amplitude. The presence of the magnetic field influences the NN potential substantially which can have important consequences on highly magnetized astrophysical compact objects, such as magnetars. The most important observation of this work is that the mixing amplitude is non-zero, leading to a positive contribution to the CSV potential even if the proton and neutron masses are taken to be equal. We also show that with the inclusion of the anomalous magnetic moment of the nucleons, the anisotropic nature of the CSV potential gets enhanced even if the background magnetic field is weak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.E. Kharzeev, K. Landsteiner, A. Schmitt, H.U. Yee, Lect. Notes Phys. 871, 1 (2013)

    Article  ADS  Google Scholar 

  2. D.E. Kharzeev, L.D. McLerran, H.J. Warringa, Nucl. Phys. A 803, 227 (2008)

    Article  ADS  Google Scholar 

  3. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    Article  ADS  Google Scholar 

  4. R.C. Duncan, C. Thompson, Astrophys. J. 392, L9 (1992)

    Article  ADS  Google Scholar 

  5. E.J. Ferrer, V. de la Incera, C. Manuel, Phys. Rev. Lett. 95, 152002 (2005)

    Article  ADS  Google Scholar 

  6. E.J. Ferrer, V. de la Incera, C. Manuel, Nucl. Phys. B 747, 88 (2006)

    Article  ADS  Google Scholar 

  7. E.J. Ferrer, V. de la Incera, Phys. Rev. D 76, 045011 (2007)

    Article  ADS  Google Scholar 

  8. K. Fukushima, H.J. Warringa, Phys. Rev. Lett. 100, 032007 (2008)

    Article  ADS  Google Scholar 

  9. B. Feng, D. Hou, H.C. Ren, P.P. Wu, Phys. Rev. Lett. 105, 042001 (2010)

    Article  ADS  Google Scholar 

  10. S. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 82, 045010 (2010)

    Article  ADS  Google Scholar 

  11. D.E. Kharzeev, A. Zhitnitsky, Nucl. Phys. A 797, 67 (2007)

    Article  ADS  Google Scholar 

  12. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  13. D.E. Kharzeev, Ann. Phys. (N.Y.) 325, 205 (2010)

    Article  ADS  Google Scholar 

  14. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996)

    Article  ADS  Google Scholar 

  15. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 563, 361 (1999)

    Article  ADS  Google Scholar 

  16. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, S. Kreig, A. Schafer, K.K. Szabo, JHEP 02, 044 (2012)

    Article  ADS  Google Scholar 

  17. M.N. Chernodub, Phys. Rev. D 82, 085011 (2010)

    Article  ADS  Google Scholar 

  18. M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011)

    Article  ADS  Google Scholar 

  19. M.N. Chernodub, Lect. Notes Phys. 871, 143 (2013)

    Article  ADS  Google Scholar 

  20. J.O. Andersen, Phys. Rev. D 86, 025020 (2012)

    Article  ADS  Google Scholar 

  21. G. Colucci, E.S. Fraga, A. Sedrakian, Phys. Lett. B 728, 19 (2014)

    Article  ADS  Google Scholar 

  22. H. Liu, L. Yu, M. Huang, Phys. Rev. D 91, 014017 (2015)

    Article  ADS  Google Scholar 

  23. S.P. Adhya, M. Mandal, S. Biswas, P.K. Roy, Phys. Rev. D 93, 074033 (2016)

    Article  ADS  Google Scholar 

  24. S. Ghosh, A. Mukherjee, M. Mandal, S. Sarkar, P. Roy, Phys. Rev. D 94, 094043 (2016)

    Article  ADS  Google Scholar 

  25. S. Ghosh, A. Mukherjee, M. Mandal, S. Sarkar, P. Roy, Phys. Rev. D 96, 116020 (2017)

    Article  ADS  Google Scholar 

  26. A. Mukherjee, S. Ghosh, M. Mandal, S. Sarkar, P. Roy, Phys. Rev. D 96, 016024 (2017)

    Article  ADS  Google Scholar 

  27. K. Hattori, K. Itakura, Ann. Phys. (Amsterdam) 330, 23 (2013)

    Article  ADS  Google Scholar 

  28. K. Hattori, K. Itakura, Ann. Phys. (Amsterdam) 224, 58 (2013)

    Article  ADS  Google Scholar 

  29. F. Karbstein, Phys. Rev. D 88, 085033 (2013)

    Article  ADS  Google Scholar 

  30. K. Tuchin, Phys. Rev. C 88, 024910 (2013)

    Article  ADS  Google Scholar 

  31. A. Bandyopadhyay, C.A. Islam, M.G. Mustafa, Phys. Rev. D 94, 114034 (2016)

    Article  ADS  Google Scholar 

  32. N. Sadooghi, F. Taghinavaz, Ann. Phys. 376, 218 (2017)

    Article  ADS  Google Scholar 

  33. A. Bandyopadhyay, S. Mallik, arXiv:1704.01364 [hep-ph]

  34. G.A. Miller, M.K. Nefkens, I. Slaus, Phys. Rep. 194, 1 (1990)

    Article  ADS  Google Scholar 

  35. C.R. Howell et al., Phys. Lett. B 444, 252 (1998)

    Article  ADS  Google Scholar 

  36. D.E. Gonzalez Trotter et al., Phys. Rev. Lett. 83, 3788 (1999)

    Article  ADS  Google Scholar 

  37. J.A. Nolen, J.P. Schiffer, Annu. Rev. Nucl. Sci. 19, 471 (1969)

    Article  ADS  Google Scholar 

  38. K. Okamoto, Phys. Lett. 11, 150 (1964)

    Article  ADS  Google Scholar 

  39. L.N. Epele, H. Fanchlottl, C.A. Garcia Canal, G.A. Gonzfilez Sprlnberg, Phys. Lett. B 277, 33 (1992)

    Article  ADS  Google Scholar 

  40. R. Machleidt, H. Muther, Phys. Rev. C 63, 034005 (2001)

    Article  ADS  Google Scholar 

  41. G.A. Miller, A.K. Opper, E.J. Stephenson, Annu. Rev. Nucl. Part. Sci. 56, 253 (2006)

    Article  ADS  Google Scholar 

  42. C.E. Wolfe, K. Maltman, Phys. Rev. D 83, 077301 (2011)

    Article  ADS  Google Scholar 

  43. H.B. O’Connell, B.C. Pearce, A.W. Thomas, A.G. Williams, Prog. Part. Nucl. Phys. 39, 201 (1997)

    Article  ADS  Google Scholar 

  44. A.K. Dutt-Mazumder, B. Dutt-Roy, A. Kundu, Phys. Lett. B 399, 196 (1997)

    Article  ADS  Google Scholar 

  45. A.K. Dutt-Mazumder, R. Hofmann, M. Pospelov, Phys. Rev. C 63, 015204 (2000)

    Article  ADS  Google Scholar 

  46. P. Roy, A.K. Dutt-Mazumder, S. Sarkar, Jan-e Alam, J. Phys. G 35, 065106 (2008)

    Article  ADS  Google Scholar 

  47. P.C. McNamee, M.D. Scadron, S.A. Coon, Nucl. Phys. A 249, 483 (1975)

    Article  ADS  Google Scholar 

  48. S.A. Coon, M.D. Scadron, Nucl. Phys. A 287, 381 (1977)

    Article  ADS  Google Scholar 

  49. S.A. Coon, M.D. Scadron, Phys. Rev. C 26, 562 (1982)

    Article  ADS  Google Scholar 

  50. J. Piekarewicz, Phys. Rev. C 48, 1555 (1993)

    Article  ADS  Google Scholar 

  51. S.A. Coon, R.C. Barrett, Phys. Rev. C 36, 2189 (1987)

    Article  ADS  Google Scholar 

  52. T. Goldman, J.A. Henderson, A.W. Thomas, Few-Body Syst. 12, 123 (1992)

    Article  ADS  Google Scholar 

  53. G. Krein, A.W. Thomas, A.G. Williams, Phys. Lett. B 317, 293 (1993)

    Article  ADS  Google Scholar 

  54. H.B. O’Connell, B.C. Pearce, A.W. Thomas, A.G. Williams, Phys. Lett. B 336, 1 (1994)

    Article  ADS  Google Scholar 

  55. J. Piekarewicz, A.G. Williams, Phys. Rev. C 47, R2462 (1993)

    Article  ADS  Google Scholar 

  56. T. Hatsuda, E.M. Henley, Th. Meissner, G. Krein, Phys. Rev. C 49, 452 (1994)

    Article  ADS  Google Scholar 

  57. T.D. Cohen, G.A. Miller, Phys. Rev. C 52, 3428 (1995)

    Article  ADS  Google Scholar 

  58. S.A. Coon, B.H.J. McKellar, A.A. Rawlinson, AIP Conf. Proc. 412, 368 (1997)

    ADS  Google Scholar 

  59. H.B. O’Connell, B.C. Pearce, A.W. Thomas, A.G. Williams, Prog. Part. Nucl. Phys. 39, 201 (1997)

    Article  ADS  Google Scholar 

  60. G.A. Miller, W.H.T. van Oers, in Symmetries and Fundamental Interactions in Nuclei, edited by W.C. Haxton, E.M. Henley (World Scientific, Singapore, 1995) p. 127

  61. Wei-Zhou Jiang, Bao-An Li, Phys. Rev. C 80, 044322 (2009)

    Article  ADS  Google Scholar 

  62. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  63. T.K. Chyi, C.W. Hwang, W.F. Kao, G.L. Lin, K.W. Ng, J.J. Tseng, Phys. Rev. D 62, 105014 (2000)

    Article  ADS  Google Scholar 

  64. S. Biswas, P. Roy, A.K. Dutt-Mazumder, Phys. Rev. C 78, 045207 (2008)

    Article  ADS  Google Scholar 

  65. R.M. Aguirre, Phys. Rev. D 95, 074029 (2017)

    Article  ADS  Google Scholar 

  66. J.F. Nieves, Phys. Rev. D 70, 073001 (2004)

    Article  ADS  Google Scholar 

  67. M. Mandal, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arghya Mukherjee.

Additional information

Communicated by Shi-Lin Zhu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, M., Mukherjee, A., Ghosh, S. et al. \(\rho^{0} - \omega\) mixing in the presence of a weak magnetic field. Eur. Phys. J. A 54, 99 (2018). https://doi.org/10.1140/epja/i2018-12527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12527-1

Navigation