Skip to main content
Log in

Low energy constituent quark and pion effective couplings in a weak external magnetic field

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

An effective model with pions and constituent quarks in the presence of a weak external background electromagnetic field is derived by starting from a dressed one gluon exchange quark-quark interaction. By applying the auxiliary field and background field methods, the structureless pion limit is considered to extract effective pion and constituent quark couplings in the presence of a weak magnetic field. The leading terms of a large quark and gluon masses expansion are obtained by resolving effective coupling constants which turn out to depend on a weak magnetic field. Two pion field definitions are considered for that. Several relations between the effective coupling constants and parameters can be derived exactly or in the limit of very large quark mass at zero and weak constant magnetic field. Among these ratios, the Gell-Mann-Oakes-Renner and the quark level Goldberger-Treiman relations are obtained. In addition to that, in the pion sector, the leading terms of Chiral Perturbation Theory coupled to the electromagnetic field are recovered. Some numerical estimates are provided for the effective coupling constants and parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984)

    Article  ADS  Google Scholar 

  2. S. Scherer, Eur. Phys. J. A 28, 59 (2006)

    Article  ADS  Google Scholar 

  3. S. Scherer, Prog. Part. Nucl. Phys. 64, 1 (2010)

    Article  ADS  Google Scholar 

  4. J. Bijnens, G. Ecker, Annu. Rev. Nucl. Part. Sci. 64, 149 (2014)

    Article  ADS  Google Scholar 

  5. S. Weinberg, Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  6. Yu.A. Simonov, Phys. Rev. D 65, 094018 (2002)

    Article  ADS  Google Scholar 

  7. A.A. Osipov, B. Hiller, A.H. Blin, Eur. Phys. J. A 49, 14 (2013)

    Article  ADS  Google Scholar 

  8. D. Ebert, H. Reinhardt, M.K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994)

    Article  ADS  Google Scholar 

  9. C.D. Roberts, R.T. Cahill, J. Praschifka, Ann. Phys. 188, 20 (1988)

    Article  ADS  Google Scholar 

  10. B. Holdom, Phys. Rev. D 45, 2534 (1992)

    Article  ADS  Google Scholar 

  11. Q. Wang, Yu-P. Kuang, X-Lei Wang, M. Xiao, Phys. Rev. D 61, 054011 (2000)

    Article  ADS  Google Scholar 

  12. K. Ren, H.-F. Fu, Q. Wang, Phys. Rev. D 95, 074012 (2017)

    Article  ADS  Google Scholar 

  13. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  14. U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991)

    Article  ADS  Google Scholar 

  15. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 1 (1994)

    Article  Google Scholar 

  16. F.L. Braghin, Eur. Phys. J. A 52, 134 (2016)

    Article  ADS  Google Scholar 

  17. E. de Rafael, Phys. Lett. B 703, 60 (2011)

    Article  ADS  Google Scholar 

  18. M. Lavelle, D. McMullan, Phys. Rep. 279, 1 (1997)

    Article  ADS  Google Scholar 

  19. A.W. Thomas, Nucl. Phys. B Proc. Suppl. 119, 50 (2003)

    Article  ADS  Google Scholar 

  20. R.D. Young, D.B. Leinweber, A.W. Thomas, Prog. Part. Nucl. Phys. 50, 399 (2003) and references therein

    Article  ADS  Google Scholar 

  21. S. Weinberg, The Quantum Theory of Fields, Vol. II (Cambridge University Press, 1996)

  22. S.J. Brodsky, R. Shrock, Phys. Lett. B 666, 95 (2008)

    Article  ADS  Google Scholar 

  23. S.J. Brodsky, R. Shrock, arXiv:0803.2541

  24. S.J. Brodsky, R. Shrock, Proc. Natl. Acad. Sci. U.S.A. 108, 45 (2011)

    Article  ADS  Google Scholar 

  25. S.J. Brodsky, R. Shrock, arXiv:0803.2554

  26. H. Reinhardt, H. Weigel, Phys. Rev. D 85, 074029 (2012)

    Article  ADS  Google Scholar 

  27. A. Manohar, G. Georgi, Nucl. Phys. B 233, 232 (1984)

    Article  Google Scholar 

  28. S. Weinberg, Phys. Rev. Lett. 105, 261601 (2010)

    Article  ADS  Google Scholar 

  29. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)

    Article  MathSciNet  Google Scholar 

  30. J.O. Andersen, W.R. Naylor, A. Tranberg, Rev. Mod. Phys. 88, 025001 (2016) arXiv:1411.7176

    Article  ADS  Google Scholar 

  31. V.A. Miransky, I.A. Shovkovy, Phys. Rep. 576, 1 (2015)

    Article  ADS  Google Scholar 

  32. V.A. Miransky, I.A. Shovkovy, Phys. Rev. D 66, 045006 (2002)

    Article  ADS  Google Scholar 

  33. V.P. Gusynin, V.A. Miransky, I.A. Shovkovy, Nucl. Phys. B 462, 249 (1996)

    Article  ADS  Google Scholar 

  34. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz, A. Schafer, Phys. Rev. D 86, 071502 (2012) arXiv:1206.4205

    Article  ADS  Google Scholar 

  35. K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 110, 031601 (2013)

    Article  ADS  Google Scholar 

  36. F. Bruckmann, G. Endrodi, T.G. Kovacs, J. High Energy Phys. 04, 112 (2013)

    Article  ADS  Google Scholar 

  37. B. Chatterjee, H. Mishra, A. Mishra, Phys. Rev. D 91, 034031 (2015)

    Article  ADS  Google Scholar 

  38. M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011)

    Article  ADS  Google Scholar 

  39. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008) arXiv:0808.3382 [hep-ph]

    Article  ADS  Google Scholar 

  40. D.E. Kharzeev, Prog. Part. Nucl. Phys. 75, 133 (2014)

    Article  ADS  Google Scholar 

  41. D.E. Kharzeev, Annu. Rev. Nucl. Part. Sci. 65, 193 (2015)

    Article  ADS  Google Scholar 

  42. E.V. Gorbar, Phys. Lett. B 695, 354 (2011)

    Article  ADS  Google Scholar 

  43. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, X. Wang, Phys. Rev. D 88, 025043 (2013)

    Article  ADS  Google Scholar 

  44. L. Xia, Phys. Rev. D 90, 085011 (2014)

    Article  ADS  Google Scholar 

  45. J. Chao, P. Chu, M. Huang, Phys. Rev. D 88, 054009 (2013) arXiv:1305.1100 [hep-ph]

    Article  ADS  Google Scholar 

  46. L. Yu, H. Liu, M. Huang, arXiv:1404.6969 [hep-ph]

  47. E.J. Ferrer, V. de la Incera, A. Sanchez, Phys. Rev. Lett. 107, 041602 (2011)

    Article  ADS  Google Scholar 

  48. E.J. Ferrer, V. de la Incera, X.J. Wen, Phys. Rev. D 91, 054006 (2015)

    Article  ADS  Google Scholar 

  49. E.J. Ferrer et al., Rev. D 89, 085034 (2014)

    Article  Google Scholar 

  50. R.L.S. Farias, K.P. Gomes, G. Krein, M.B. Pinto, Phys. Rev. C 90, 025203 (2014)

    Article  ADS  Google Scholar 

  51. A. Ayala,, arXiv:1510.09134 [hep-ph]

  52. C.-F. Li, L. Yang, X.J. Wen, G.X. Peng, Phys. Rev. D 93, 054005 (2016)

    Article  ADS  Google Scholar 

  53. M.A. Andreichikov, V.D. Orlovsky, Y.A. Simonov, Phys. Rev. Lett. 110, 162002 (2013)

    Article  ADS  Google Scholar 

  54. F.L. Braghin, Phys. Rev. D 94, 074030 (2016)

    Article  ADS  Google Scholar 

  55. F.L. Braghin, Phys. Rev. D 97, 014022 (2018)

    Article  ADS  Google Scholar 

  56. D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B 742, 183 (2015) and references therein

    Article  ADS  Google Scholar 

  57. K.-I. Kondo, Phys. Rev. D 57, 7467 (1998)

    Article  ADS  Google Scholar 

  58. J.M. Cornwall, Phys. Rev. D 83, 076001 (2011)

    Article  ADS  Google Scholar 

  59. P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003)

    Article  ADS  Google Scholar 

  60. P. Tandy, Prog. Part. Nucl. Phys. 39, 117 (1997)

    Article  ADS  Google Scholar 

  61. K. Higashijima, Phys. Rev. D 29, 1228 (1984)

    Article  ADS  Google Scholar 

  62. K.I. Aoki et al., Prog. Theor. Phys. 84, 683 (1990)

    Article  ADS  Google Scholar 

  63. A.C. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 84, 085026 (2011)

    Article  ADS  Google Scholar 

  64. M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195 (1968)

    Article  ADS  Google Scholar 

  65. M.L. Goldberger, S. Treiman, Phys. Rev. 111, 354 (1966)

    Article  ADS  Google Scholar 

  66. D. Barquilla-Cano, A.J. Buchmann, E. Hernández, Nucl. Phys. A 714, 611 (2003) arXiv:[nucl-th]/0204067

    Article  ADS  Google Scholar 

  67. D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986)

    Article  ADS  Google Scholar 

  68. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    Article  ADS  Google Scholar 

  69. L.F. Abbott, Acta Phys. Pol. B 13, 33 (1982)

    Google Scholar 

  70. M.O.C. Gomes, Teoria Quântica de Campos (EDUSP, São Paulo, Brazil, 2002)

  71. F.L. Braghin, Phys. Rev. D 64, 125001 (2001)

    Article  ADS  Google Scholar 

  72. H. Kleinert, in Erice Summer Institute 1976, Understanding the Fundamental Constituents of Matter, edited by A. Zichichi (Plenum Press, New York, 1978) p. 289

  73. G. ’t Hooft, Nucl. Phys. B 72, 461 (1974)

    Article  ADS  Google Scholar 

  74. W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936) translated into English: arXiv:[physics]/0605038

    Article  ADS  Google Scholar 

  75. G.S. Bali et al., JHEP 02, 44 (2012) arXiv:1111.4956

    Article  ADS  Google Scholar 

  76. G. Endrodi, JHEP 04, 023 (2013) arXiv:1301.1307

    Article  ADS  MathSciNet  Google Scholar 

  77. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  78. J. Schwinger, Phys. Rev. 93, 615 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  79. F.L. Braghin, Phys. Lett. B 761, 424 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  80. E. Witten, Nucl. Phys. B 160, 57 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  81. S. Weinberg, Phys. Rev. Lett. 18, 188 (1967)

    Article  ADS  Google Scholar 

  82. J. Greensite, An Introduction to the Confinement Problem (Springer, Heildelberg, 2011)

  83. P. Watson, H. Reinhardt, Phys. Rev. D 89, 045008 (2014)

    Article  ADS  Google Scholar 

  84. G.S. Bali et al., J. High Energy Phys. 04, 130 (2013)

    Article  ADS  Google Scholar 

  85. C. Itzikson, J.-B. Zuber, Quantum Field Theory (McGraw Hill, 1985)

  86. J.O. Andersen, JHEP 10, 005 (2012)

    Article  ADS  Google Scholar 

  87. A. Paulo jr., F.L. Braghin, Phys. Rev. D 90, 014049 (2014)

    Article  ADS  Google Scholar 

  88. M. Benayoun, H.B. O’Connell, A.G. Williams, Phys. Rev. D 59, 074020 (1999)

    Article  ADS  Google Scholar 

  89. G. Kalbermann, Phys. Rev. D 33, 1987 (1986)

    Article  ADS  Google Scholar 

  90. T.-K. Chyi et al., Phys. Rev. D 62, 105014 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio L. Braghin.

Additional information

Communicated by Shi-Lin Zhu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braghin, F.L. Low energy constituent quark and pion effective couplings in a weak external magnetic field. Eur. Phys. J. A 54, 45 (2018). https://doi.org/10.1140/epja/i2018-12485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12485-6

Navigation