Skip to main content
Log in

The SPEDE spectrometer

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The electron spectrometer, SPEDE, has been developed and will be employed in conjunction with the Miniball spectrometer at the HIE-ISOLDE facility, CERN. SPEDE allows for direct measurement of internal conversion electrons emitted in-flight, without employing magnetic fields to transport or momentum filter the electrons. Together with the Miniball spectrometer, it enables simultaneous observation of \( \gamma\) rays and conversion electrons in Coulomb excitation experiments using radioactive ion beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Akkoyun et al., Nucl. Instrum. Methods Phys. Res. A 668, 26 (2012)

    Article  ADS  Google Scholar 

  2. J. Eberth, J. Simpson, Prog. Part. Nucl. Phys. 60, 283 (2008)

    Article  ADS  Google Scholar 

  3. J. Van Klinken et al., Nucl. Instrum. Methods 130, 427 (1975)

    Article  ADS  Google Scholar 

  4. P.A. Butler et al., Nucl. Instrum. Methods Phys. Res. A 381, 433 (1996)

    Article  ADS  Google Scholar 

  5. P. Fallon, A. Gade, I.Y. Lee, Annu. Rev. Nucl. Part. Sci. 66, 102115 (2016)

    Article  Google Scholar 

  6. J. Pakarinen et al., Eur. Phys. J. A 50, 53 (2014)

    Article  ADS  Google Scholar 

  7. J. Smallcombe et al., EPJ Web of Conferences 123, 04005 (2016)

    Article  Google Scholar 

  8. J.A. Rodriguez, in Proceedings of IPAC2016 (JACoW, 2016) pp. 1284--1286, https://doi.org/10.18429/JACoW-IPAC2016-TUPMR023

  9. M. Zielińska et al., Eur. Phys. J. A 52, 99 (2016)

    Article  ADS  Google Scholar 

  10. N. Warr et al., Eur. Phys. J. A 49, 1 (2013)

    Article  Google Scholar 

  11. A. Ostrowski et al., Nucl. Instrum. Methods Phys. Res. A 480, 448 (2002)

    Article  ADS  Google Scholar 

  12. J. Konki et al., EPJ Web of Conferences 63, 01019 (2013)

    Article  Google Scholar 

  13. P. Papadakis et al., JPS Conf. Proc. 6, 030023 (2015)

    Google Scholar 

  14. D.M. Cox et al., Acta Phys. Pol. B 48, 403 (2017)

    Article  ADS  Google Scholar 

  15. J. Kantele et al., Nucl. Instrum. Methods Phys. 130, 467 (1975)

    Article  ADS  Google Scholar 

  16. U. Bechthold et al., Phys. Rev. Lett. 79, 2034 (1997)

    Article  ADS  Google Scholar 

  17. Vector Fields “OPERA Version 12” (2007) www.vectorfields.com

  18. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  19. Y. Khazov, A. Rodionov, F.G. Kondev, Nucl. Data Sheets 112, 855 (2009)

    Article  ADS  Google Scholar 

  20. A. Matta et al., J. Phys. G: Nucl. Part. Phys. 43, 45113 (2016)

    Article  Google Scholar 

  21. D.M. Cox, in preparation

  22. C.M. Baglin, Nucl. Data Sheets 110, 265 (2009)

    Article  ADS  Google Scholar 

  23. A. Johansson et al., Nucl. Phys. A 98, 278 (1978)

    Article  ADS  Google Scholar 

  24. T. Kibédi et al., Nucl. Instrum. Methods Phys. Res. A 589, 202 (2008)

    Article  ADS  Google Scholar 

  25. A.E. Stuchbery et al., Nucl. Phys. A 486, 374 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pakarinen.

Additional information

Communicated by A. Jokinen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papadakis, P., Cox, D.M., O’Neill, G.G. et al. The SPEDE spectrometer. Eur. Phys. J. A 54, 42 (2018). https://doi.org/10.1140/epja/i2018-12474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12474-9

Navigation