Skip to main content

Advertisement

Log in

Correlated prompt fission data in transport simulations

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and \( \gamma\)-ray observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and \( \gamma\)-ray spectra, angular distributions of the emitted particles, n -n, n - \( \gamma\), and \( \gamma\) - \( \gamma\) correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA and CGMF codes have been developed to follow the sequential emissions of prompt neutrons and \( \gamma\) rays from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and \( \gamma\) emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the \( \gamma\)-ray strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. The inclusion of the FREYA and CGMF codes into the MCNP6.2 and MCNPX - PoliMi transport codes, for instance, provides a new and powerful tool to simulate correlated fission events in neutron transport calculations important in nonproliferation, safeguards, nuclear energy, and defense programs. This review provides an overview of the topic, starting from theoretical considerations of the fission process, with a focus on correlated signatures. It then explores the status of experimental correlated fission data and current efforts to address some of the known shortcomings. Numerical simulations employing the FREYA and CGMF codes are compared to experimental data for a wide range of correlated fission quantities. The inclusion of those codes into the MCNP6.2 and MCNPX - PoliMi transport codes is described and discussed in the context of relevant applications. The accuracy of the model predictions and their sensitivity to model assumptions and input parameters are discussed. Finally, a series of important experimental and theoretical questions that remain unanswered are presented, suggesting a renewed effort to address these shortcomings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bohr, J.A. Wheeler, Phys. Rev. 56, 426 (1939)

    Article  ADS  Google Scholar 

  2. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Technical Report LA-UR-15-26310, arXiv:1508.06294, Los Alamos National Laboratory (2015)

  3. T. Ichikawa, A. Iwamoto, P. Möller, A.J. Sierk, Phys. Rev. C 86, 024610 (2012)

    Article  ADS  Google Scholar 

  4. W. Younes, D. Gogny, Phys. Rev. Lett. 107, 132501 (2011)

    Article  ADS  Google Scholar 

  5. D. Regnier, N. Dubray, N. Schunck, M. Verrière, Phys. Rev. C 93, 054611 (2016)

    Article  ADS  Google Scholar 

  6. A. Bulgac, P. Magierski, K.J. Roche, I. Stetcu, Phys. Rev. Lett. 116, 122504 (2016)

    Article  ADS  Google Scholar 

  7. N. Ensslin, W.C. Harker, M.S. Krick, D.G. Langner, M.M. Pockrell, J.E. Stewart, Technical Report LA-13422-M, Los Alamos National Laboratory (1998)

  8. P. Talou, T. Kawano, I. Stetcu, Technical Report LA-CC-13-063, Los Alamos National Laboratory (2013)

  9. J.M. Verbeke, J. Randrup, R. Vogt, Comput. Phys. Commun. 191, 178 (2015)

    Article  ADS  Google Scholar 

  10. J.M. Verbeke, J. Randrup, R. Vogt, Comput. Phys. Commun. 222, 263 (2018)

    Article  ADS  Google Scholar 

  11. O. Litaize, O. Serot, L. Berge, Eur. Phys. J. A 51, 177 (2015)

    Article  ADS  Google Scholar 

  12. K.H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)

    Article  ADS  Google Scholar 

  13. MCNP6 Development Team, Technical Report LA-UR-13-22934, Los Alamos National Laboratory (2013)

  14. S.A. Pozzi, S.D. Clarke, W. Walsh, E. Miller, J. Dolan, M. Flaska, B. Wieger, A. Enqvist, E. Padovani, J. Mattingly et al., Nucl. Instrum. Methods Phys. Res. A 694, 119 (2012)

    Article  ADS  Google Scholar 

  15. A. Bohr, On the Theory of Nuclear Fission, in International Conference on the Peaceful Uses of Atomic Energy, Vol. 2 (N.Y. United Nations, Geneva, 1956) p. 151

  16. T. Kawano, P. Talou, M.B. Chadwick, T. Watanabe, J. Nucl. Sci. Technol. 47, 462 (2010)

    Article  Google Scholar 

  17. R. Capote et al., Nucl. Data Sheets 131, 1 (2016)

    Article  ADS  Google Scholar 

  18. V.N. Dushin, F.J. Hambsch, V.A. Jakovlev, V.A. Kalinin, I.S. Kraev, A.B. Laptev, D.V. Nikolaev, B.F. Petrov, G.A. Petrov, V.I. Petrova et al., Nucl. Instrum. Methods Phys. Res. A 516, 539 (2004)

    Article  ADS  Google Scholar 

  19. A.S. Vorobyev, O.A. Shcherbakov, A.M. Gagarski, G.V. Val’ski, G.A. Petrov, EPJ Web of Conferences 8, 03004 (2010)

    Article  Google Scholar 

  20. K. Nishio, Y. Nakagome, I. Kanno, I. Kimura, J. Nucl. Sci. Technol. 32, 404 (1995)

    Article  Google Scholar 

  21. A. Göök, F.J. Hambsch, M. Vidali, Phys. Rev. C 90, 064611 (2014)

    Article  ADS  Google Scholar 

  22. K. Nishio, Y. Nakagome, H. Yamamoto, I. Kimura, Nucl. Phys. A 632, 540 (1998)

    Article  ADS  Google Scholar 

  23. C. Tsuchiya, Y. Nakagome, H. Yamana, H. Moriyama, K. Nishio, I. Kanno, K. Shin, I. Kimura, J. Nucl. Sci. Technol. 37, 941 (2000)

    Article  Google Scholar 

  24. U. Brosa, S. Grossmann, A. Müller, Phys. Rep. 197, 167 (1990)

    Article  ADS  Google Scholar 

  25. P. Möller, D.G. Madland, A.J. Sierk, A. Iwamoto, Nature 409, 785 (2001)

    Article  ADS  Google Scholar 

  26. M.B. Chadwick, M. Herman, P. Obložinský et al., Nucl. Data Sheets 112, 2887 (2011)

    Article  ADS  Google Scholar 

  27. P. Santi, M. Miller, Nucl. Sci. Eng. 160, 190 (2008)

    Article  Google Scholar 

  28. N.E. Holden, M.S. Zucker, Nucl. Sci. Eng. 98, 174 (1988)

    Article  Google Scholar 

  29. D.G. Madland, J.R. Nix, Nucl. Sci. Eng. 81, 213 (1982)

    Article  Google Scholar 

  30. R. Billnert, F.J. Hambsch, A. Oberstedt, S. Oberstedt, Phys. Rev. C 87, 024601 (2013)

    Article  ADS  Google Scholar 

  31. V.V. Verbinski, H. Weber, R.E. Sund, Phys. Rev. C 7, 1173 (1973)

    Article  ADS  Google Scholar 

  32. A.D. Carlson, V.G. Pronyaev, D.L. Smith, N.M. Larson, Z. Chen, G.M. Hale, F.J. Hambsch, E.V. Gai, S.Y. Oh, S.A. Badikov et al., Nucl. Data Sheets 110, 3215 (2009)

    Article  ADS  Google Scholar 

  33. A. Gatera, T. Belgya, W. Geerts, A. Göök, F.J. Hambsch, M. Lebois, B. Maróti, A. Moens, A. Oberstedt, S. Oberstedt et al., Phys. Rev. C 95, 064609 (2017)

    Article  ADS  Google Scholar 

  34. A. Oberstedt, T. Belgya, R. Billnert, R. Borcea, T. Bryś, W. Geerts, A. Göök, F.J. Hambsch, Z. Kis, T. Martinez et al., Phys. Rev. C 87, 051602 (2013)

    Article  ADS  Google Scholar 

  35. N.E. Holden, M.S. Zucker, Prompt neutron multiplicities for the transplutonium nuclides, in International Conference on Nuclear Data for Science and Technology, Santa Fe, New Mexico, edited by P. Young, Vol. 2 (Gordon and Breach Science Publishers, 1985) p. 1631

  36. R.R. Spencer, R. Gwin, R. Ingle, Nucl. Sci. Eng. 80, 603 (1982)

    Article  Google Scholar 

  37. A.S. Vorobyev, V.N. Dushin, F.J. Hambsch, V.A. Jakovlev, V.A. Kalinin, A.B. Laptev, B.F. Petrov, O.A. Shcherbakov, Distribution of prompt neutron emission probability for fission fragments in spontaneous fission of ${}^{252}$Cf and ${}^{244,248}$Cm, in International Conference on Nuclear Data for Science and Technology, edited by R. Haight, M. Chadwick, T. Kawano, P. Talou, Vol. CP769 (American Institute of Physics, 2005) p. 613

  38. M. Soleilhac, J. Fréhaut, J. Gauriau, J. Nucl. Energy 23, 257 (1969)

    Article  Google Scholar 

  39. J. Terrell, Phys. Rev. 108, 783 (1957)

    Article  ADS  Google Scholar 

  40. F. Pleasonton, R.L. Ferguson, H.W. Schmitt, Phys. Rev. C 6, 1023 (1972)

    Article  ADS  Google Scholar 

  41. J.M. Verbeke, C. Hagmann, D. Wright, Technical Report UCRL-AR-228518, Lawrence Livermore National Laboratory (2010)

  42. T.E. Valentine, Ann. Nucl. Energy 28, 191 (2001)

    Article  Google Scholar 

  43. A. Oberstedt, R. Billnert, F.J. Hambsch, S. Oberstedt, Phys. Rev. C 92, 014618 (2015)

    Article  ADS  Google Scholar 

  44. A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, T.A. Bredeweg, R.C. Haight, A.C. Hayes-Sterbenz, H.Y. Lee, J.M. O’Donnell, J.L. Ullmann, Phys. Rev. C 90, 014602 (2014)

    Article  ADS  Google Scholar 

  45. S. Oberstedt, R. Billnert, A. Gatera, W. Geerts, P. Halipré, F.J. Hambsch, M. Lebois, A. Oberstedt, P. Marini, M. Vidali et al., Phys. Proc. 64, 83 (2015)

    Article  ADS  Google Scholar 

  46. A. Chyzh, C.Y. Wu, E. Kwan, R.A. Henderson, J.M. Gostic, T.A. Bredeweg, R.C. Haight, A.C. Hayes, M. Jandel, J.M. O’Donnell et al., Phys. Rev. C 85, 021601(R) (2012)

    Article  ADS  Google Scholar 

  47. H. Nifenecker, C. Signarbieux, M. Ribrag, J. Poitou, J. Matuszek, Nucl. Phys. A 189, 285 (1972)

    Article  ADS  Google Scholar 

  48. T. Wang, G. Li, L. Zhu, Q. Meng, L. Wang, H. Han, W. Zang, H. Xia, L. Hou, R. Vogt et al., Phys. Rev. C 93, 014606 (2016)

    Article  ADS  Google Scholar 

  49. J.E. Lynn, Phys. Lett. 18, 31 (1965)

    Article  ADS  Google Scholar 

  50. V. Stavinsky, M.O. Shaker, Nucl. Phys. 62, 667 (1965)

    Article  Google Scholar 

  51. O.A. Shcherbakov, Sov. J. Part. Nucl. 21, 177 (1990)

    Google Scholar 

  52. F.J. Hambsch, H.H. Knitter, C. Budtz-Jørgensen, J.P. Theobald, Nucl. Phys. A 491, 56 (1989)

    Article  ADS  Google Scholar 

  53. F.J. Hambsch, Prompt fission neutron emission of ${}^{235}$U(n,f): thermal and resonance region, in 14th International Conference on Nuclear Reaction Mechanisms (CERN, 2015)

  54. H.R. Bowman, J.C.D. Milton, S.G. Thompson, W.J. Swiatecki, Phys. Rev. 126, 2120 (1962)

    Article  ADS  Google Scholar 

  55. K. Skarsvåg, K. Bergheim, Nucl. Phys. 45, 72 (1963)

    Article  Google Scholar 

  56. J.S. Pringle, F.D. Brooks, Phys. Rev. Lett. 35, 1563 (1975)

    Article  ADS  Google Scholar 

  57. A.M. Gagarski, I.S. Guseva, V.E. Sokolov, G.V. Val’ski, G.A. Petrov, D.O. Krinitsin, D.V. Nikolaev, T.A. Zavarukhina, V.I. Petrova, Bull. Russ. Acad. Sci. Phys. 72, 773 (2008)

    Article  Google Scholar 

  58. S.A. Pozzi, B. Wieger, A. Enqvist, S.D. Clarke, M. Flaska, E. Larsen, R.C. Haight, E. Padovani, Nucl. Sci. Eng. 178, 250 (2014)

    Article  Google Scholar 

  59. J. Randrup, R. Vogt, Phys. Rev. C 89, 044601 (2014)

    Article  ADS  Google Scholar 

  60. E.J. Winhold, P.T. Demos, I. Halpern, Phys. Rev. 87, 1139 (1952)

    Article  ADS  Google Scholar 

  61. L.S. Leong, PhD Thesis, Université Paris Sud, Orsay, France (2013)

  62. A.S. Vorobyev, A.M. Gagarski, O.A. Shcherbakov, L.A. Vaishnene, A.L. Barabanov, Pis’ma v Zh. Eksp. Teor. Fiz. 102, 231 (2015)

    Google Scholar 

  63. V. Kleinrath, PhD Thesis, Vienna University of Technology, Austria (2015)

  64. J.M. Mueller, M.W. Ahmed, B. Davis, J.M. Hall, S.S. Henshaw, M.S. Johnson, H.J. Karwowski, D. Markoff, L.S. Myers, B.A. Perdue et al., Phys. Rev. C 85, 014605 (2012)

    Article  ADS  Google Scholar 

  65. K. Skarsvåg, Phys. Rev. C 22, 638 (1980)

    Article  ADS  Google Scholar 

  66. M.J. Marcath, T.H. Shin, S.D. Clarke, P. Peerani, S.A. Pozzi, Nucl. Instrum. Methods Phys. Res. A 830, 163 (2016)

    Article  ADS  Google Scholar 

  67. J.L. Ullmann, E.M. Bond, T.A. Bredeweg, A. Couture, R.C. Haight, M. Jandel, T. Kawano, H.Y. Lee, J.M. O’Donnell, A.C. Hayes et al., Phys. Rev. C 87, 044607 (2013)

    Article  ADS  Google Scholar 

  68. M. Jandel, G. Rusev, E.M. Bond, T.A. Bredeweg, M.B. Chadwick, A. Couture, M.M. Fowler, R.C. Haight, T. Kawano, A.L. Keksis et al., Phys. Proc. 59, 101 (2014)

    Article  ADS  Google Scholar 

  69. M. Jandel, B. Baramsai, T. Bredeweg, A. Couture, A. Favalli, A. Hayes, K. Ianakiev, M. Iliev, T. Kawano, S. Mosby et al., Nucl. Instrum. Methods Phys. Res. A 882, 105 (2018)

    Article  Google Scholar 

  70. L.F. Nakae, G.F. Chapline, A.M. Glenn, P.L. Kerr, K.S. Kim, S.A. Ouedraogo, M.K. Prasad, S.A. Sheets, N.J. Snyderman, J.M. Verbeke, R.E. Wurtz, Recent Developments in Fast Neutron Detection and Multiplicity Counting with Verification with Liquid Scintillator, LLNL-CONF-489556 (2011)

  71. J.M. Verbeke, L.F. Nakae, R. Vogt, LLNL-JRNL-731534 (2017)

  72. M.T. Andrews, M.E. Rising, K.C. Meierbachtol, P. Talou, A. Sood, C.R. Bates, E.A. McKigney, C.J. Solomon, LA-UR-17-26443 (2017)

  73. J.F. Martin, PhD Thesis, Université Paris Sud, Orsay, France (2014)

  74. E. Pellereau, Phys. Rev. C 95, 054603 (2017)

    Article  ADS  Google Scholar 

  75. A.S. Vorobyev, O.A. Shcherbakov, V.N. Dushin, V.A. Jakovlev, V.A. Kalinin, B.F. Petrov, F.J. Hambsch, A.B. Laptev, Prompt neutron emission from fragments in spontaneous fission of ${}^{244,248}$Cm and ${}^{252}$Cf, in International Workshop on Nuclear Fission and Fission Product Spectroscopy (A.I.P., 2005)

  76. A.M. Daskalakis, R.M. Bahran, E.J. Blain, B.J. McDermott, S. Piela, Y. Danon, D.P. Barry, G. Leinweber, R.C. Block, M.J. Rapp et al., Ann. Nucl. Energy 73, 455 (2014)

    Article  Google Scholar 

  77. D. Neudecker, P. Talou, T. Kawano, D.L. Smith, R. Capote, M.E. Rising, A.C. Kahler, Nucl. Instrum. Methods Phys. Res. A 791, 80 (2015)

    Article  ADS  Google Scholar 

  78. N. Kornilov, Fission Neutrons: Experiments, Evaluation, Modeling and Open Problems, (Springer International Publishing, 2015)

  79. B. Morillon, P. Romain, private communication

  80. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952)

    Article  ADS  Google Scholar 

  81. P. Talou, B. Becker, T. Kawano, M.B. Chadwick, Y. Danon, Phys. Rev. C 83, 064612 (2011)

    Article  ADS  Google Scholar 

  82. A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988)

    Article  ADS  Google Scholar 

  83. G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012)

    Article  Google Scholar 

  84. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  85. J. Kopecky, M. Uhl, Phys. Rev. C 41, 1941 (1990)

    Article  ADS  Google Scholar 

  86. R. Capote, M. Herman, P. Oblozinsky, P.G. Young, S. Goriely, T. Belgya, A.V. Ignatyuk, A.J. Koning, S. Hilaire, V.A. Plujko et al., Nucl. Data Sheets 110, 3107 (2009)

    Article  ADS  Google Scholar 

  87. J.K. Tuli, Nucl. Instrum. Methods Phys. Res. A 369, 506 (1996)

    Article  ADS  Google Scholar 

  88. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Sov. J. Nucl. Phys. 21, 255 (1975)

    Google Scholar 

  89. E. Gadioli, Pre-Equilibrium Nuclear Reactions (Oxford University Press, 1992)

  90. R. Vogt, J. Randrup, D.A. Brown, M.A. Descalle, W. Ormand, Phys. Rev. C 85, 024608 (2012)

    Article  ADS  Google Scholar 

  91. R. Vogt, J. Randrup, Phys. Rev. C 87, 044602 (2013)

    Article  ADS  Google Scholar 

  92. S. Lemaire, P. Talou, T. Kawano, M.B. Chadwick, D.G. Madland, Phys. Rev. C 72, 024601 (2005)

    Article  ADS  Google Scholar 

  93. H. Koura, M. Uno, T. Tachibana, M. Yamada, Nucl. Phys. A 674, 47 (2000)

    Article  ADS  Google Scholar 

  94. C. Budtz-Jørgensen, H.H. Knitter, Nucl. Phys. A 490, 307 (1988)

    Article  ADS  Google Scholar 

  95. R. Vogt, J. Randrup, Phys. Rev. C 84, 044621 (2011)

    Article  ADS  Google Scholar 

  96. J. Terrell, Phys. Rev. 113, 527 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  97. V.F. Weisskopf, Phys. Rev. 113, 527 (1937)

    Google Scholar 

  98. J. Randrup, R. Vogt, Phys. Rev. C 80, 024601 (2009)

    Article  ADS  Google Scholar 

  99. R. Vogt, J. Randrup, Phys. Rev. C 96, 064620 (2017)

    Article  ADS  Google Scholar 

  100. B.L. Berman, S.C. Fultz, Rev. Mod. Phys. 47, 713 (1975)

    Article  ADS  Google Scholar 

  101. F.B. Brown, M.E. Rising, J.L. Alwin, Technical Report LA-UR-17-23822, Los Alamos National Laboratory (2017)

  102. J.T. Goorley, Technical Report LA-UR-14-24680, Los Alamos National Laboratory (2014)

  103. X-5 Monte Carlo Team, Technical Report LA-UR-03-1987, Los Alamos National Laboratory (2005)

  104. D.B. Pelowitz, Technical Report LA-CP-11-00438, Los Alamos National Laboratory (2011)

  105. P. Santi, D.H. Beddingfield, D.R. Mayo, Nucl. Phys. A 756, 325 (2005)

    Article  ADS  Google Scholar 

  106. J.P. Lestone, Technical Report LA-UR-05-0288, Los Alamos National Laboratory (2005)

  107. S.A. Pozzi, E. Padovani, M. Marseguerra, Nucl. Instrum. Methods Phys. Res. A 513, 550 (2003)

    Article  ADS  Google Scholar 

  108. T.E. Valentine, J.T. Mihalczo, Ann. Nucl. Energy 23, 1271 (1996)

    Article  Google Scholar 

  109. K.H. Schmidt, B. Jurado, Phys. Rev. Lett. 104, 212501 (2010)

    Article  ADS  Google Scholar 

  110. C. Morariu, A. Tudora, F.J. Hambsch, S. Oberstedt, C. Manailescu, J. Phys. G: Nucl. Part. Phys. 39, 055103 (2012)

    Article  ADS  Google Scholar 

  111. H.R. Bowman, J.C.D. Milton, S.G. Thompson, W.J. Swiatecki, Phys. Rev. 129, 2133 (1963)

    Article  ADS  Google Scholar 

  112. F.J. Hambsch, S. Oberstedt, A.A. Adili, R. Borcea, A. Oberstedt, A. Tudora, S. Zeynalov, J. Korean Phys. Soc. 59, 1654 (2011)

    Article  Google Scholar 

  113. G. Rusev, B. Baramsai, E.M. Bond, T.A. Bredeweg, M. Jandel, D.J. Vieira, A. Couture, S. Mosby, J.L. Ullmann, A.C. Hayes, Measurements of correlated fission data with DANCE and NEUANCE, in Proceedings of the Sixth International Conference on Fission and Properties of Neutron-Rich Nuclei, ICFN6 (World Scientific, 2017)

  114. M. Jandel, Technical Report LA-UR-12-24795, Los Alamos National Laboratory (2012)

  115. J. Allison et al., Nucl. Instrum. Methods Phys. Res. A 835, 186 (2016)

    Article  ADS  Google Scholar 

  116. D.K. Hauck, A. Favalli, P.A. Santi, S. Croft, Technical Report LA-UR-13-25358, Los Alamos National Laboratory (2013)

  117. M.S. Zucker, N.E. Holden, Technical Report BNL-38491, Brookhaven National Laboratory (1986)

  118. A. Göök, W. Geerts, F.J. Hambsch, S. Oberstedt, M. Vidali, S. Zeynalov, Nucl. Instrum. Methods Phys. Res. A 830, 366 (2016)

    Article  ADS  Google Scholar 

  119. P. Talou, T. Kawano, I. Stetcu, J.P. Lestone, E. McKigney, M.B. Chadwick, Phys. Rev. C 94, 064613 (2016)

    Article  ADS  Google Scholar 

  120. T. Granier, Phys. Proc. 64, 183 (2015)

    Article  ADS  Google Scholar 

  121. A. Chatillon, G. Bélier, T. Granier, B. Laurent, B. Morillon, J. Taieb, R.C. Haight, M. Devlin, R.O. Nelson, S. Noda et al., Phys. Rev. C 89, 014611 (2014)

    Article  ADS  Google Scholar 

  122. R.P. Feynman, F.D. Hoffmann, R. Serber, J. Nucl. Energy 3, 64 (1956)

    Google Scholar 

  123. D.M. Cifarelli, W. Hage, Nucl. Instrum. Methods Phys. Res. A 251, 550 (1986)

    Article  ADS  Google Scholar 

  124. M.K. Prasad, N.J. Snyderman, Nucl. Sci. Eng. 172, 300 (2012)

    Article  Google Scholar 

  125. J.M. Verbeke, Nucl. Sci. Eng. 182, 481 (2016)

    Article  Google Scholar 

  126. G.F. Chapline, L.F. Nakae, N. Snyderman, J.M. Verbeke, R. Wurtz, Monitoring spent or reprocessed nuclear fuel using fast neutrons, in Proceedings of the 15th International Conference on Emerging Nuclear Energy Systems (ICENES 2011), San Francisco, CA (Lawrence Livermore National Laboratory, 2011), LLNL-CONF-485216

  127. A. Enqvist, I. Pázsit, S. Pozzi, Nucl. Instrum. Methods Phys. Res. A 556, 598 (2006)

    Article  ADS  Google Scholar 

  128. A. Enqvist, S.A. Pozzi, I. Pázsit, Nucl. Instrum. Methods Phys. Res. A 607, 451 (2009)

    Article  ADS  Google Scholar 

  129. I. Pázsit, L. Pál, Neutron Fluctuations: A Treatise on the Physics of Branching Processes (Elsevier, Oxford, 2008)

  130. K.S. Kim, L.F. Nakae, M.K. Prasad, N.J. Snyderman, J.M. Verbeke, Nucl. Sci. Eng. 181, 225 (2015)

    Article  Google Scholar 

  131. J.M. Verbeke, G.F. Chapline, S.A. Sheets, Nucl. Instrum. Methods Phys. Res. A 782, 126 (2015)

    Article  ADS  Google Scholar 

  132. J. Randrup, P. Talou, R. Vogt, EPJ Web of Conferences 146, 04003 (2017)

    Article  Google Scholar 

  133. C. Wagemans (Editor), The Nuclear Fission Process (CRC Press, Inc., 1991)

  134. P. Möller, C. Schmitt, Eur. Phys. J. A 53, 7 (2017)

    Article  ADS  Google Scholar 

  135. A.J. Sierk, Phys. Rev. C 96, 034603 (2017)

    Article  ADS  Google Scholar 

  136. L. Bonneau, P. Quentin, I.N. Mikhailov, Phys. Rev. C 75, 064313 (2007)

    Article  ADS  Google Scholar 

  137. F. Gönnenwein, I. Tsekhanovich, V. Rubchenya, Int. J. Mod. Phys. E 16, 410 (2007)

    Article  ADS  Google Scholar 

  138. S.G. Kadmensky, L.V. Titova, Phys. At. Nucl. 72, 1738 (2009)

    Article  Google Scholar 

  139. J. Randrup, P. Möller, Phys. Rev. Lett. 106, 132503 (2011)

    Article  ADS  Google Scholar 

  140. Y. Aritomo, S. Chiba, F. Ivanyuk, Phys. Rev. C 90, 054609 (2014)

    Article  ADS  Google Scholar 

  141. A. Staszczak, A. Baran, J. Dobaczewski, W. Nazarewicz, Phys. Rev. C 80, 014309 (2009)

    Article  ADS  Google Scholar 

  142. J.L. Ullmann, T. Kawano, T.A. Bredeweg, A. Couture, R.C. Haight, M. Jandel, J.M. O’Donnell, R.S. Rundberg, D.J. Vieira, J.B. Wilhelmy et al., Phys. Rev. C 89, 034603 (2014)

    Article  ADS  Google Scholar 

  143. D.L. Duke, PhD Thesis, Colorado School of Mines (2015)

  144. C. Bhatia, B. Fallin, C. Howell, W. Tornow, M. Gooden, J. Kelley, C. Arnold, E. Bond, T. Bredeweg, M. Fowler et al., Nucl. Data Sheets 119, 324 (2014)

    Article  ADS  Google Scholar 

  145. M.O. Frégeau, S. Oberstedt, T. Gamboni, W. Geerts, F.J. Hambsch, M. Vidali, Nucl. Instrum. Methods Phys. Res. A 817, 35 (2016)

    Article  ADS  Google Scholar 

  146. T. Materna, A. Letourneau, C. Amouroux, A. Marchix, O. Litaize, O. Serot, D. Regnier, A. Blanc, M. Jentschel, U. Köster et al., EPJ Web of Conferences 93, 02020 (2015)

    Article  Google Scholar 

  147. D.L. Duke, F. Tovesson, A.B. Laptev, S. Mosby, F.J. Hambsch, T. Bryś, M. Vidali, Phys. Rev. C 94, 054604 (2016)

    Article  ADS  Google Scholar 

  148. K. Meierbachtol, F. Tovesson, D.L. Duke, V. Geppert-Kleinrath, B. Manning, R. Meharchand, S. Mosby, D. Shields, Phys. Rev. C 94, 034611 (2016)

    Article  ADS  Google Scholar 

  149. R. Müller, A.A. Naqvi, F. Käppeler, F. Dickmann, Phys. Rev. C 29, 885 (1984)

    Article  ADS  Google Scholar 

  150. A.A. Naqvi, F. Käppeler, F. Dickmann, R. Müller, Phys. Rev. C 34, 218 (1986)

    Article  ADS  Google Scholar 

  151. S.C. Burnett, R.L. Ferguson, F. Plasil, H.W. Schmitt, Phys. Rev. C 3, 2034 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Vogt.

Additional information

Communicated by T. Duguet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talou, P., Vogt, R., Randrup, J. et al. Correlated prompt fission data in transport simulations. Eur. Phys. J. A 54, 9 (2018). https://doi.org/10.1140/epja/i2018-12455-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12455-0

Navigation