Skip to main content
Log in

Evolution of single-particle structure of silicon isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

New data on proton and neutron single-particle energies \( E_{nlj}\) of Si isotopes with neutron number N from 12 to 28 as well as occupation probabilities \( N_{nlj}\) of single-particle states of stable isotopes 28, 30Si near the Fermi energy were obtained by the joint evaluation of the stripping and pick-up reaction data and excited state decay schemes of neighboring nuclei. The evaluated data indicate the following features of single-particle structure evolution: persistence of Z = 14 subshell closure with N increase, the new magicity of the number N = 16, and the conservation of the magic properties of the number N = 20 in Si isotopic chain. The features were described by the dispersive optical model. The calculation also predicts the weakening of N = 28 shell closure and demonstrates evolution of a bubble-like structure of the proton density distributions in neutron-rich Si isotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Sorlin, M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008)

    Article  ADS  Google Scholar 

  2. A. Gade, Eur. Phys. J. A 51, 118 (2015)

    Article  ADS  Google Scholar 

  3. B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007)

    Article  ADS  Google Scholar 

  4. D. Tarpanov et al., Phys. Rev. C 77, 054316 (2008)

    Article  ADS  Google Scholar 

  5. J. Fridmann et al., Nature 435, 922 (2005)

    Article  ADS  Google Scholar 

  6. J. Fridmann et al., Phys. Rev. C 74, 034313 (2006)

    Article  ADS  Google Scholar 

  7. S. Takeuchi et al., Phys. Rev. Lett. 109, 182501 (2012)

    Article  ADS  Google Scholar 

  8. A. Mutschler et al., Nat. Phys. 13, 152 (2017)

    Article  Google Scholar 

  9. M. Grasso et al., Phys. Rev. C 79, 034318 (2009)

    Article  ADS  Google Scholar 

  10. National Nuclear Data Center, Brookhaven, http://nndc.lbl.gov

  11. G. Haouat et al., Phys. Rev. C 30, 1795 (1984)

    Article  ADS  Google Scholar 

  12. M.A. Al-Ohali et al., Phys. Rev. C 86, 034603 (2012)

    Article  ADS  Google Scholar 

  13. C. Mahaux, R. Sartor, Adv. Nucl. Phys. 20, 1 (1991)

    ADS  Google Scholar 

  14. C.H. Johnson, R.F. Carlton, R.R. Winters, Phys. Rev. C. 39, 415 (1989)

    Article  ADS  Google Scholar 

  15. Zemin Chen, R.L. Walter, W. Tornow et al., J. Phys. G. 30, 1847 (2004)

    Article  ADS  Google Scholar 

  16. R.D. Lawson, P.T. Guenther, A.B. Smith, Nucl. Phys. A 493, 267 (1989)

    Article  ADS  Google Scholar 

  17. J.M. Quesada et al., Phys. Rev. C 76, 057602 (2007)

    Article  ADS  Google Scholar 

  18. B. Morillon, P. Romain, Phys. Rev. C 76, 044601 (2007)

    Article  ADS  Google Scholar 

  19. O.V. Bespalova et al., Bull. R. Acad. Sci.: Phys. 71, 423 (2007)

    Google Scholar 

  20. R.J. Charity et al., Phys. Rev. C 76, 044314 (2007)

    Article  ADS  Google Scholar 

  21. O.V. Bespalova, E.A. Romanovsky, T.I. Spasskaya, Phys. At. Nucl. 78, 118 (2015)

    Article  Google Scholar 

  22. W.H. Dickhoff, R.J. Charity, M.H. Mahzoon, J. Phys. G: Nucl. Part. Phys. 44, 033001 (2017)

    Article  ADS  Google Scholar 

  23. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 1 (World Scientific Publ. Co., Singapore, 1998)

  24. P.M. Endt, At. Data Nucl. Data Tables 19, 23 (1977)

    Article  ADS  Google Scholar 

  25. I.N. Boboshin et al., Nucl. Phys. A 496, 93 (1989)

    Article  ADS  Google Scholar 

  26. A. Pfeiffer et al., Nucl. Phys. A 455, 381 (1986)

    Article  ADS  Google Scholar 

  27. J.B. French, M.H. Macfarlane, Nucl. Phys. 26, 168 (1961)

    Article  Google Scholar 

  28. G. Mairle et al., Phys. Rev. C 47, 2113 (1993)

    Article  ADS  Google Scholar 

  29. T. Duguet, G. Hagen, Phys. Rev. C 85, 034330 (2012)

    Article  ADS  Google Scholar 

  30. M. Wang et al., Chin. Phys. C 36, 1603 (2012)

    Article  ADS  Google Scholar 

  31. W.W. Dykoski, D. Dehnhard, Phys. Rev. C 13, 80 (1976)

    Article  ADS  Google Scholar 

  32. V. Vernotte et al., Phys. Rev. C 41, 1956 (1990)

    Article  ADS  Google Scholar 

  33. H. Mackh et al., Z. Phys. A 269, 353 (1974)

    Article  Google Scholar 

  34. M.C. Mermaz et al., Phys. Rev. C 4, 1778 (1971)

    Article  ADS  Google Scholar 

  35. S. Piskoř et al., Nucl. Phys. A 662, 112 (2000)

    Article  ADS  Google Scholar 

  36. R.L. Kozub, Phys. Rev. 172, 1078 (1968)

    Article  ADS  Google Scholar 

  37. R.C. Haight et al., Nucl. Phys. A 241, 285 (1975)

    Article  ADS  Google Scholar 

  38. A.D.W. Jones et al., Phys. Rev. 180, 997 (1969)

    Article  ADS  Google Scholar 

  39. C.F. Clement, S.M. Perez, J. Phys. A 7, 1464 (1974)

    Article  ADS  Google Scholar 

  40. National Nuclear Data Center, Brookhaven, Evaluated Nuclear Structure Data File, http://ie.lbl.gov/ensdf/

  41. R.R. Reynolds et al., Phys. Rev. C 81, 067303 (2010)

    Article  ADS  Google Scholar 

  42. M. Jaminon et al., Nucl. Phys. A 440, 228 (1985)

    Article  ADS  Google Scholar 

  43. W.H. Dickhoff, C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)

    Article  ADS  Google Scholar 

  44. L. Lapikás, Nucl. Phys. A 553, 297 (1993)

    Article  ADS  Google Scholar 

  45. Y. Wang et al., Phys. Rev. C 47, 2677 (1993)

    Article  ADS  Google Scholar 

  46. G.V. Kolomiytsev, S.Yu. Igashov, M.H. Urin, Phys. At. Nucl. 77, 1105 (2014)

    Article  Google Scholar 

  47. G.V. Kolomiytsev, S.Yu. Igashov, M.H. Urin, Phys. At. Nucl. 80, 614 (2017)

    Article  Google Scholar 

  48. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  49. R.W. Finlay et al., Phys. Rev. C 47, 237 (1993)

    Article  ADS  Google Scholar 

  50. R.F. Carlson, At. Data Nucl. Data Tables 63, 93 (1996)

    Article  ADS  Google Scholar 

  51. Y. Wang et al., Phys. Rev. C 45, 2891 (1992)

    Article  ADS  Google Scholar 

  52. E.A. Romanovsky, O.V. Bespalova, S.A. Goncharov, Phys. At. Nuclei 63, 399 (2000)

    Article  ADS  Google Scholar 

  53. J.W. Watson et al., J. Phys. (Paris) Colloq. 45, C4 (1984)

    Article  Google Scholar 

  54. A. Virdis, Nuclear Data for Science and Technology, in Proceedings of the International Conference Antwerp, 6--10 September 1982 (Springer Netherlands, 1983) p. 796

  55. Y. Yamanouti, S. Tanaka, Prog. Rep., Japanese report to NEANDC 51/U, p. 13

  56. J. Rapaport et al., Nucl. Phys. A 286, 232 (1977)

    Article  ADS  Google Scholar 

  57. R.P. De Vito et al., Phys. Rev. C 28, 2530 (1983)

    Article  ADS  Google Scholar 

  58. E.L. Hjort et al., Phys. Rev. C 50, 275 (1994)

    Article  ADS  Google Scholar 

  59. D.J. Baugh, G.W. Greenlees, J.S. Lilley, S. Roman, Nucl. Phys. 33, 65 (1965)

    Google Scholar 

  60. Y. Aoki et al., Nucl. Phys. A 599, 417 (1996)

    Article  ADS  Google Scholar 

  61. L.W. Put, P.P. Urone, A.M. Paans, Phys. Lett. B 35, 311 (1971)

    Article  ADS  Google Scholar 

  62. M. Pignanelli et al., Phys. Rev. C 33, 40 (1986)

    Article  ADS  Google Scholar 

  63. S. Kato et al., Phys. Rev. C 31, 1616 (1985)

    Article  ADS  Google Scholar 

  64. O.V. Bespalova et al., Phys. At. Nucl. 68, 191 (2005)

    Article  Google Scholar 

  65. J. Dobaczewski, Phys. Rev. C 53, 2809 (1996)

    Article  ADS  Google Scholar 

  66. S.R. Stroberg et al., Phys. Rev. C 90, 034301 (2014)

    Article  ADS  Google Scholar 

  67. L. Gaudefroy et al., Phys. Rev. Lett. 97, 092501 (2006)

    Article  ADS  Google Scholar 

  68. S. Peru, M. Girod, J.F. Berger, Eur. Phys. J. A 9, 35 (2000)

    Article  ADS  Google Scholar 

  69. A.M. Lane, Nucl. Phys. 35, 676 (1962)

    Article  Google Scholar 

  70. J.M. Mueller et al., Phys. Rev. C 83, 064605 (2011)

    Article  ADS  Google Scholar 

  71. P.D. Cottle, Phys. Rev. C 76, 02731 (2007)

    Article  Google Scholar 

  72. K.I. Pearce et al., Nucl. Phys. A 467, 215 (1987)

    Article  ADS  Google Scholar 

  73. A. Djaloeis et al., Phys. Rev. C 28, 561 (1983)

    Article  ADS  Google Scholar 

  74. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984)

    Article  ADS  Google Scholar 

  75. H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36, 495536 (1987)

    Article  Google Scholar 

  76. I. Angeli, At. Data Nucl. Data Tables 87, 185 (2004) updated 2008

    Article  ADS  Google Scholar 

  77. T. Duguet et al., Phys. Rev. C 95, 034319 (2017)

    Article  ADS  Google Scholar 

  78. G. Burgunder et al., Phys. Rev. Lett. 112, 042502 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Tretyakova.

Additional information

Communicated by T. Duguet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bespalova, O.V., Fedorov, N.A., Klimochkina, A.A. et al. Evolution of single-particle structure of silicon isotopes. Eur. Phys. J. A 54, 2 (2018). https://doi.org/10.1140/epja/i2018-12449-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2018-12449-x

Navigation