Skip to main content
Log in

Dynamical vs. geometric anisotropy in relativistic heavy-ion collisions: Which one prevails?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We study the influence of geometric and dynamical anisotropies on the development of flow harmonics and, simultaneously, on the second- and third-order oscillations of femtoscopy radii. The analysis is done within the Monte Carlo event generator HYDJET++, which was extended to dynamical triangular deformations. It is shown that the merely geometric anisotropy provides the results which anticorrelate with the experimental observations of either \(v_{2}\) (or \(v_{3}\)) or second-order (or third-order) oscillations of the femtoscopy radii. Decays of resonances significantly increase the emitting areas but do not change the phases of the radii oscillations. In contrast to the spatial deformations, the dynamical anisotropy alone provides the correct qualitative description of the flow and the femtoscopy observables simultaneously. However, one needs both types of the anisotropy to match quantitatively the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004)

    Article  ADS  Google Scholar 

  2. L.D. Landau, Izv. Akad. Nauk SSSR, Ser. Fiz. 17, 51 (1953) (in Russian)

    Google Scholar 

  3. S.Z. Belenkij, L.D. Landau, Nuovo Cimento Suppl. 3, 15 (1956)

    Article  Google Scholar 

  4. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  5. S.A. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996)

    Article  Google Scholar 

  6. S.A. Voloshin, A.M. Poskanzer, R. Snellings, in Relativistic Heavy Ion Physics, Landolt-Börnstein Database Vol. 23, edited by R. Stock (Springer, Berlin, 2010) pp. 5--54

  7. R. Hanbury Brown, R.Q. Twiss, Philos. Mag. Ser.7 45, 663 (1954)

    Article  Google Scholar 

  8. G. Goldhaber, S. Goldhaber, W.-Y. Lee, A. Pais, Phys. Rev. 120, 300 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  9. M.I. Podgoretsky, Fiz. Elem. Chast. Atom. Yadra 20, 628 (1989) (in Russian)

    Google Scholar 

  10. R. Lednicky, Phys. At. Nucl. 67, 72 (2004)

    Article  Google Scholar 

  11. M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 55, 357 (2005)

    Article  ADS  Google Scholar 

  12. M.I. Podgoretsky, Sov. J. Nucl. Phys. 37, 272 (1983)

    Google Scholar 

  13. R. Lednicky, preprint JINR B2-3-11460, (Dubna, 1978)

  14. P. Grassberger, Nucl. Phys. B 120, 231 (1977)

    Article  ADS  Google Scholar 

  15. G.F. Bertsch, P. Danielewicz, M. Herrmann, Phys. Rev. C 49, 442 (1994)

    Article  ADS  Google Scholar 

  16. S. Pratt, in Quark Gluon Plasma 2, edited by R.C. Hwa (World Scientific, Singapore, 1995) p. 700

  17. S. Chapman, P. Scotto, U. Heinz, Phys. Rev. Lett. 74, 4400 (1995)

    Article  ADS  Google Scholar 

  18. U. Wiedemann, Phys. Rev. 57, 266 (1998)

    ADS  Google Scholar 

  19. M.A. Lisa, U. Heinz, U.A. Wiedemann, Phys. Lett. B 489, 287 (2000)

    Article  ADS  Google Scholar 

  20. U. Heinz, P.F. Kolb, Phys. Lett. B 542, 216 (2002)

    Article  ADS  Google Scholar 

  21. F. Retiere, M.A. Lisa, Phys. Rev. C 70, 044907 (2004)

    Article  ADS  Google Scholar 

  22. M. Csanad, B. Tomasik, T. Csorgo, Eur. Phys. J. A 37, 111 (2008)

    Article  ADS  Google Scholar 

  23. C.J. Plumberg, C. Shen, U. Heinz, Phys. Rev. C 88, 044914 (2013)

    Article  ADS  Google Scholar 

  24. S. Lökös, M. Csanad, B. Tomasik, T. Csorgo, Eur. Phys. J. A 52, 311 (2016)

    Article  ADS  Google Scholar 

  25. J. Cimerman, B. Tomasik, M. Csanad, S. Lökös, Eur. Phys. J. A 53, 161 (2017)

    Article  ADS  Google Scholar 

  26. T. Csorgo, B. Lorstad, Phys. Rev. C 54, 1390 (1996)

    Article  ADS  Google Scholar 

  27. P.J. Siemens, J.O. Rasmussen, Phys. Rev. Lett. 42, 880 (1979)

    Article  ADS  Google Scholar 

  28. I.P. Lokhtin, L.V Malinina, S.V. Petrushanko, A.M. Snigirev, I. Arsene, K. Tywoniuk, Comput. Phys. Commun. 180, 779 (2009)

    Article  ADS  Google Scholar 

  29. I.P. Lokhtin, A.V. Belyaev, L.V Malinina, S.V. Petrushanko, E.P. Rogochaya, A.M. Snigirev, Eur. Phys. J. C 72, 2045 (2012)

    Article  ADS  Google Scholar 

  30. L.V. Bravina, B.H. Brusheim Johansson, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, Eur. Phys. J. C 74, 2807 (2014)

    Article  ADS  Google Scholar 

  31. M. Chojnacki, A. Kisiel, W. Florkowski, W. Broniowski, Comput. Phys. Commun. 183, 746 (2012)

    Article  ADS  Google Scholar 

  32. N.S. Amelin et al., Phys. Rev. C 74, 064901 (2006)

    Article  ADS  Google Scholar 

  33. N.S. Amelin et al., Phys. Rev. C 77, 014903 (2008)

    Article  ADS  Google Scholar 

  34. I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 45, 211 (2006)

    Article  ADS  Google Scholar 

  35. T. Sjostrand, S. Mrenna, P. Skands, JHEP 05, 026 (2006)

    Article  ADS  Google Scholar 

  36. R. Baier, Yu.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 483, 291 (1997)

    Article  ADS  Google Scholar 

  37. R. Baier, Yu.L. Dokshitzer, A.H. Mueller, D. Schiff, Phys. Rev. C 60, 064902 (1999)

    Article  ADS  Google Scholar 

  38. R. Baier, Yu.L. Dokshitzer, A.H. Mueller, D. Schiff, Phys. Rev. C 64, 057902 (2001)

    Article  ADS  Google Scholar 

  39. J.D. Bjorken, Fermilab publication Pub-82/29-THY (1982)

  40. E. Braaten, M. Thoma, Phys. Rev. D 44, 1298 (1991)

    Article  ADS  Google Scholar 

  41. I.P. Lokhtin, A.M. Snigirev, Eur. Phys. J. C 16, 527 (2000)

    Article  ADS  Google Scholar 

  42. K. Tywoniuk, I.C. Arsene, L. Bravina, A.B. Kaidalov, E. Zabrodin, Phys. Lett. B 657, 170 (2007)

    Article  ADS  Google Scholar 

  43. G. Eyyubova, L. Bravina, V.L. Korotkih, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, E. Zabrodin, Phys. Rev. C 80, 064907 (2009)

    Article  ADS  Google Scholar 

  44. E.E. Zabrodin, L.V. Bravina, G.Kh. Eyyubova, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, J. Phys. G 37, 094060 (2010)

    Article  ADS  Google Scholar 

  45. J. Crkovská et al., Phys. Rev. C 95, 014910 (2017)

    Article  ADS  Google Scholar 

  46. E.E. Zabrodin, L.V. Bravina, B.H. Brusheim Johansson, J. Crkovská, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, J. Phys.: Conf. Ser. 668, 012099 (2016)

    Google Scholar 

  47. L. Bravina, B.H. Brusheim Johansson, G. Eyyubova, E. Zabrodin, Phys. Rev. C 87, 034901 (2013)

    Article  ADS  Google Scholar 

  48. L.V. Bravina, B.H. Brusheim Johansson, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, Phys. Rev. C 89, 024909 (2014)

    Article  ADS  Google Scholar 

  49. G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev, L.V. Bravina, E.E. Zabrodin, Phys. Rev. C 91, 064907 (2015)

    Article  ADS  Google Scholar 

  50. L.V. Bravina, E.S. Fotina, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, E.N. Nazarova, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, Eur. Phys. J. C 75, 588 (2015)

    Article  ADS  Google Scholar 

  51. I.P. Lokhtin, A.V. Belyaev, G. Ponimatkin, E.Yu. Pronina, G.Kh. Eyyubova, J. Exp. Theor. Phys. 124, 244 (2017)

    Article  ADS  Google Scholar 

  52. CMS Collaboration (S. Chatrchyan et al.), Phys. Rev. C 87, 014902 (2013)

    Article  ADS  Google Scholar 

  53. ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 696, 328 (2011)

    Article  Google Scholar 

  54. ALICE Collaboration (V. Loggins et al.), Nucl. Phys. A 931, 1088 (2014)

    Article  Google Scholar 

  55. ALICE Collaboration (M. Saleh), arXiv:1704.06206

  56. PHENIX Collaboration (T. Niida et al.), Nucl. Phys. A 904-905, 439c (2013)

    Article  Google Scholar 

  57. H. Heiselberg, Phys. Rev. Lett. 82, 2052 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Bravina.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravina, L.V., Lokhtin, I.P., Malinina, L.V. et al. Dynamical vs. geometric anisotropy in relativistic heavy-ion collisions: Which one prevails?. Eur. Phys. J. A 53, 219 (2017). https://doi.org/10.1140/epja/i2017-12420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12420-5

Navigation