Skip to main content
Log in

The role of nuclear corrections on the structure function and the EMC-ratio of deuteron

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We investigate the EMC effect in the deuteron nucleus using the quark exchange formalism and the harmonic-oscillator shell model. We first calculate the parton distribution functions (PDFs) of deuteron applying the chiral quark exchange model and also considering the shell model effect, at low \(Q^{2}\) scale. Then we obtain the deuteron structure function (SF) and the EMC-ratio of this nucleus. We compare the results with the available experimental data and the results of some parametrization models. It is found that the results of our completely theoretical model are in good agreement with the corresponding experimental data and the parametrized results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Aubert et al., Phys. Lett. B 123, 275 (1983)

    Article  ADS  Google Scholar 

  2. J.J. Aubert et al., Nucl. Phys. B 293, 740 (1987)

    Article  ADS  Google Scholar 

  3. J. Ashman et al., Phys. Lett. B 202, 603 (1988)

    Article  ADS  Google Scholar 

  4. J. Ashman et al., Z. Phys. C 57, 211 (1993)

    Article  ADS  Google Scholar 

  5. Y. Zhang, L. Shao, B.-Q. Ma, Nucl. Phys. A 828, 390 (2009)

    Article  ADS  Google Scholar 

  6. R.L. Jaffe, Phys. Rev. Lett. 50, 228 (1983)

    Article  ADS  Google Scholar 

  7. C.H.L. Smith, Phys. Lett. B 128, 107 (1983)

    Article  ADS  Google Scholar 

  8. M. Ericson, A.W. Thomas, Phys. Lett. B 128, 112 (1983)

    Article  ADS  Google Scholar 

  9. B.L. Friman, V.R. Pandharipande, R.B. Wiringa, Phys. Rev. Lett. 51, 763 (1983)

    Article  ADS  Google Scholar 

  10. P.J. Sutton, A.D. Martin, R.G. Roberts, W.J. Stirling, Phys. Rev. D 45, 2349 (1992)

    Article  ADS  Google Scholar 

  11. E.L. Berger, F. Coester, R.B. Wiringa, Phys. Rev. D 29, 398 (1984)

    Article  ADS  Google Scholar 

  12. J. Dias de Deus, M. Pimenta, J. Varela, Z. Phys. C 26, 109 (1984)

    Article  ADS  Google Scholar 

  13. A.W. Hendry, D.B. Lichtenberg, E. Predazzi, Nuovo Cimento A 92, 427 (1986)

    Article  ADS  Google Scholar 

  14. T. Kawabe, Lett. Nuovo Cimento 44, 159 (1985)

    Article  Google Scholar 

  15. P. Hoodbhoy, R.L. Jaffe, Phys. Rev. D 35, 113 (1987)

    Article  ADS  Google Scholar 

  16. P. Hoodbhoy, Nucl. Phys. A 465, 637 (1987)

    Article  ADS  Google Scholar 

  17. T. Uchiyama, K. Saito, Phys. Rev. C 38, 2245 (1988)

    Article  ADS  Google Scholar 

  18. S.V. Akulinichev, S. Shlomo, S.A. Kulagin, G.M. Vagradov, Phys. Rev. Lett. 55, 2239 (1985)

    Article  ADS  Google Scholar 

  19. S.V. Akulinichev, S.A. Kulagin, G.M. Vagradov, Phys. Lett. B 158, 485 (1985)

    Article  ADS  Google Scholar 

  20. Yonatan Kahn, W. Melnitchouk, S.A. Kulagin, Phys. Rev. C 79, 035205 (2009)

    Article  ADS  Google Scholar 

  21. S.A. Kulagin, R. Petti, Phys. Rev. C 82, 054614 (2010)

    Article  ADS  Google Scholar 

  22. K.A. Griffioen et al., Phys. Rev. C 92, 015211 (2015)

    Article  ADS  Google Scholar 

  23. M. Osipenko et al., Nucl. Phys. A 766, 142 (2006)

    Article  ADS  Google Scholar 

  24. P. Solvignon et al., Phys. Rev. Lett. 101, 182502 (2008)

    Article  ADS  Google Scholar 

  25. M.M. Yazdanpanah, M. Modarres, Few Body Syst. 37, 33 (2005)

    Article  ADS  Google Scholar 

  26. M.M. Yazdanpanah, M. Modarres, Eur. Phys. J. A 6, 91 (1999)

    Article  ADS  Google Scholar 

  27. M.M. Yazdanpanah, M. Modarres, Eur. Phys. J. A 7, 573 (2000)

    ADS  Google Scholar 

  28. M.M. Yazdanpanah, M. Modarres, M. Rasti, Few Body Syst. 48, 19 (2010)

    Article  ADS  Google Scholar 

  29. M.M. Yazdanpanah, M. Modarres, Phys. Rev. C 57, 525 (1998)

    Article  ADS  Google Scholar 

  30. H. Nematollahi, M.M. Yazdanpanah, Phys. Rev. C 92, 015209 (2015)

    Article  ADS  Google Scholar 

  31. K. Suzuki, W. Weise, Nucl. Phys. A 634, 141 (1998)

    Article  ADS  Google Scholar 

  32. Y. Ding, R.-G. Xu, B.-Q. Ma, Phys. Rev. D 71, 094014 (2005)

    Article  ADS  Google Scholar 

  33. H. Song, X. Zhang, B.-Q. Ma, Eur. Phys. J. C 71, 1542 (2011)

    ADS  Google Scholar 

  34. H. Nematollahi, M.M. Yazdanpanah, A. Mirjalili, J. Phys. G: Nucl. Part. Phys. 39, 045009 (2012)

    Article  ADS  Google Scholar 

  35. M. Modarres, F. Zolfagharpour, Nucl. Phys. A 765, 112 (2006)

    Article  ADS  Google Scholar 

  36. C.A. García Canal, T. Tarutina, V. Vento, Eur. Phys. J. A 53, 118 (2017)

    Article  ADS  Google Scholar 

  37. S. Weinberg, Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  38. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  39. Arifuzzaman, S.H. Hasan, P. Hoodbhoy, Phys. Rev. C 38, 498 (1988)

    Article  ADS  Google Scholar 

  40. M. Modarres, M.M. Yazdanpanah, F. Zolfagharpour, Eur. Phys. J. A 32, 327 (2007)

    Article  ADS  Google Scholar 

  41. M. Modarres, K. Ghafoori-Tabrizi, J. Phys. G: Nucl. Part. Phys. 14, 1479 (1988)

    Article  ADS  Google Scholar 

  42. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  43. M. Gluck, E. Reya, A. Vogt, Z. Phys. C 67, 433 (1995)

    Article  ADS  Google Scholar 

  44. V. Tvaskis et al., Phys. Rev. C 81, 055207 (2010)

    Article  ADS  Google Scholar 

  45. M. Arneodo et al., Nucl. Phys. B 483, 3 (1997)

    Article  ADS  Google Scholar 

  46. M. Arneodo et al., Nucl. Phys. B 487, 3 (1997)

    Article  ADS  Google Scholar 

  47. S.A. Kulagin, R. Petti, Nucl. Phys. A 765, 126 (2006)

    Article  ADS  Google Scholar 

  48. A. Accardi et al., Phys. Rev. D 93, 114017 (2016)

    Article  ADS  Google Scholar 

  49. S.I. Alekhin, S.A. Kulagin, R. Petti, Phys. Rev. D 96, 054005 (2017)

    Article  ADS  Google Scholar 

  50. M. Lacombe et al., Phys. Rev. C 21, 861 (1980)

    Article  ADS  Google Scholar 

  51. R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  52. S. Veerasamy, W.N. Polyzou, Phys. Rev. C 84, 034003 (2011)

    Article  ADS  Google Scholar 

  53. F. Gross, A. Stadler, Phys. Rev. C 78, 014005 (2008)

    Article  ADS  Google Scholar 

  54. F. Gross, A. Stadler, Phys. Rev. C 82, 034004 (2010)

    Article  ADS  Google Scholar 

  55. L.N. Epele, H. Fanchiotti, C.A. García Canal, R. Sassot, Phys. Lett. B 275, 155 (1992)

    Article  ADS  Google Scholar 

  56. L.N. Epele et al., Phys. Rev. D 47, 2648 (1993)

    Article  ADS  Google Scholar 

  57. J. Golak et al., Phys. Rep. 415, 89 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Nematollahi.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nematollahi, H., Yazdanpannah, M.M. The role of nuclear corrections on the structure function and the EMC-ratio of deuteron. Eur. Phys. J. A 53, 222 (2017). https://doi.org/10.1140/epja/i2017-12419-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12419-x

Navigation