Skip to main content
Log in

Precision electron-capture energy in 202Pb and its relevance for neutrino mass determination

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Within the framework of an extensive programme devoted to the search for alternative candidates for the neutrino mass determination, the atomic mass difference between 202Pb and 202Tl has been measured with the Penning trap mass spectrometer ISOLTRAP at the ISOLDE facility at CERN. The obtained value \( Q_{{\rm EC}} = 38.8(43)\) keV is three times more precise than the AME2012 value. While it will probably not lead to a replacement of 163Ho in modern experiments on the determination of the electron-neutrino mass, the electron capture in 202Pb would however allow a determination of the electron-neutrino mass on the few-eV level using a cryogenic micro-calorimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998)

    Article  ADS  Google Scholar 

  2. Q.R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002)

    Article  ADS  Google Scholar 

  3. E.W. Otten et al., Rep. Prog. Phys. 71, 086201 (2008)

    Article  ADS  Google Scholar 

  4. P.T. Springer et al., Phys. Rev. A 35, 679 (1987)

    Article  ADS  Google Scholar 

  5. S. Yasumi et al., Phys. Lett. B 181, 169 (1986)

    Article  ADS  Google Scholar 

  6. A.V. Kostelecký et al., Rev. Mod. Phys. 83, 11 (2011)

    Article  ADS  Google Scholar 

  7. E. Kugler, Hyperfine Interact. 129, 23 (2000)

    Article  ADS  Google Scholar 

  8. T. Andersen et al., Phys. Lett. B 113, 72 (1982)

    Article  ADS  Google Scholar 

  9. B. Jonson et al., Nucl. Phys. A 396, 479 (1983)

    Article  ADS  Google Scholar 

  10. K. Blaum et al., Contemp. Phys. 51, 149 (2010)

    Article  ADS  Google Scholar 

  11. K. Blaum et al., Phys. Scr. T152, 014017 (2013)

    Article  ADS  Google Scholar 

  12. P.-O. Ranitzsch et al., J. Low Temp. Phys. 167, 1004 (2012)

    Article  ADS  Google Scholar 

  13. S.F. King et al., New J. Phys. 16, 045018 (2014)

    Article  ADS  Google Scholar 

  14. H.-J. Kluge et al., Nucl. Phys. News 17, 36 (2007)

    Article  Google Scholar 

  15. S. Eliseev et al., Phys. Lett. B 693, 426 (2010)

    Article  ADS  Google Scholar 

  16. S. Eliseev et al., Phys. Rev. Lett. 115, 062501 (2015)

    Article  ADS  Google Scholar 

  17. L. Gastaldo et al., J. Low Temp. Phys. 176, 876 (2014)

    Article  ADS  Google Scholar 

  18. B. Alpert et al., Eur. Phys. J. C 75, 112 (2015)

    Article  ADS  Google Scholar 

  19. M. Croce et al., J. Low Temp. Phys. 176, 1009 (2014)

    Article  ADS  Google Scholar 

  20. H.-J. Kluge et al., Nucl. Phys. News 17, 36 (2007)

    Article  Google Scholar 

  21. A. Rujula et al., Phys. Lett. 118, 429 (1982)

    Article  Google Scholar 

  22. A. Faessler et al., Phys. Rev. C 92, 045505 (2015)

    Article  ADS  Google Scholar 

  23. A.D. Rú, J. High. Energy Phys. 2016, 15 (2016) DOI:10.1007/JHEP05(2016)015

    Google Scholar 

  24. G. Audi et al., Chin. Phys. C 36, 1157 (2012)

    Article  Google Scholar 

  25. C. Böhm et al., Phys. Rev. C 90, 044307 (2014)

    Article  ADS  Google Scholar 

  26. M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008)

    Article  ADS  Google Scholar 

  27. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

  28. R. Wolf et al., Int. J. Mass Spectrom. 349, 123 (2013)

    Article  Google Scholar 

  29. E. Hagebo et al., Nucl. Instrum. Methods Phys. Res. Sect. B 70, 165 (1992)

    Article  ADS  Google Scholar 

  30. S. Rothe et al., Nucl. Instrum. Methods Phys. Res. Sect. B 376, 91 (2016)

    Article  ADS  Google Scholar 

  31. F. Herfurth et al., Nucl. Instrum. Methods A 469, 254 (2001)

    Article  ADS  Google Scholar 

  32. R. Wolf et al., Nucl. Instrum. Methods Phys. Res. A 686, 82 (2012)

    Article  ADS  Google Scholar 

  33. F. Wienholtz et al., Phys. Scr. 2015, 014068 (2015)

    Article  Google Scholar 

  34. H. Raimbault-Hartmann et al., Nucl. Instrum. Methods B 126, 378 (1997)

    Article  ADS  Google Scholar 

  35. G. Savard et al., Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  36. G. Gräff et al., Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  37. M. Kretzschmar, Int. J. Mass Spectrum 264, 122 (2007)

    Article  Google Scholar 

  38. S. George et al., Phys. Rev. Lett. 98, 162501 (2007)

    Article  ADS  Google Scholar 

  39. G. Audi et al., Chin. Phys. C 41, 030001 (2017)

    Article  ADS  Google Scholar 

  40. F. Larkins, At. Data Nucl. Data Tables 20, 311 (1977)

    Article  ADS  Google Scholar 

  41. J. Repp et al., Appl. Phys. B 107, 983 (2012)

    Article  ADS  Google Scholar 

  42. C. Roux et al., Appl. Phys. B 107, 997 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Welker.

Additional information

Communicated by A. Jokinen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welker, A., Filianin, P., Althubiti, N.A.S. et al. Precision electron-capture energy in 202Pb and its relevance for neutrino mass determination. Eur. Phys. J. A 53, 153 (2017). https://doi.org/10.1140/epja/i2017-12345-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12345-y

Navigation