Skip to main content
Log in

Fourier transforms of single-particle wave functions in cylindrical coordinates

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A formalism and the corresponding numerical procedures that calculate the Fourier transform of a single-particle wave function defined on a grid of cylindrical (\(\rho\), z) coordinates is presented. Single-particle states in spherical and deformed nuclei have been chosen in view of future applications in the field of nuclear reactions. Bidimensional plots of the probability that the nucleon's momentum has a given value \(K=\sqrt{k_{\rho}^{2}+k_{z}^{2}}\) are produced and from them the K -distributions are deduced. Three potentials have been investigated: a) a sharp surface spherical well (i.e., of constant depth), b) a spherical Woods-Saxon potential i.e., diffuse surface) and c) a deformed potential of Woods-Saxon type. In the first case the momenta are as well defined as allowed by the uncertainty principle. Depending on the state, their distributions have up to three separated peaks as a consequence of the up to three circular ridges of the bidimensional probabilities plots. In the second case the diffuseness allows very low momenta to be always populated thus creating tails towards the origin (K = 0). The peaks are still present but not well separated. In the third case the deformation transforms the above mentioned circular ridges into ellipses thus spreading the K-values along them. As a consequence the K-distributions have only one broad peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.K. Banerjee, in Nuclear Spectroscopy, edited by Fay Ajzenberg-Selove (Academic Press, New York, London, 1960) Chapt. 2, p. 695

  2. P.G. Hansen, J.A. Tostevin, Annu. Rev. Nucl. Part. Sci. 53, 219 (2003)

    Article  ADS  Google Scholar 

  3. C.A. Bertulani, P.G. Hansen, Phys. Rev. C 70, 034609 (2004)

    Article  ADS  Google Scholar 

  4. N. Carjan, M. Rizea, Phys. Lett. B 747, 178 (2015)

    Article  ADS  Google Scholar 

  5. M.G. Mayer, J.H.D. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley, New York, 1955)

  6. S.G. Nilsson, Mat. Fys. Medd. Dan. Vidensk. Selsk. 29, 1 (1955) issue No. 1

    MathSciNet  Google Scholar 

  7. L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1977)

  8. W. Rosenheinrich, Tables of Some Indefinite Integrals of Bessel Functions (Jena, Germany, 2016) www.eah-jena.de/~rsh/Forschung/Stoer/besint.pdf

  9. J.P. Coleman, Comput. Phys. Commun. 21, 109 (1980)

    Article  ADS  Google Scholar 

  10. A.J. MacLeod, ACM Trans. Math. Softw. 22, 288 (1996)

    Article  MathSciNet  Google Scholar 

  11. R. Piessens, Comput. Phys. Commun. 25, 289 (1982)

    Article  ADS  Google Scholar 

  12. V. Magni, G. Cerullo, S. DeSilvestri, J. Opt. Soc. Am. A 9, 2031 (1992)

    Article  ADS  Google Scholar 

  13. R. Barakat, B.H. Sandler, Comput. Math. Appl. 40, 1037 (2000)

    Article  MathSciNet  Google Scholar 

  14. Rajesh K. Pandey, Vineet K. Singh, Om P. Singh, Commun. Comput. Phys. 8, 351 (2010)

    MathSciNet  Google Scholar 

  15. B. Briggs, E. Henson, The FFT: An Owner's Manual for the Discrete Fourier Transform (SIAM, Philadelphia, 1995)

  16. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes (Cambridge University Press, 1986) pp. 451--453

  17. M. Rizea, V. Ledoux, M. Van Daele, G. Vanden Berghe, N. Carjan, Comput. Phys. Commun. 179, 466 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Rizea, N. Carjan, Commun. Comput. Phys. 9, 917 (2011)

    Article  Google Scholar 

  19. D. Sorensen, R. Lehoucq, Chao Yang, K. Maschhoff, www.caam.rice.edu/software/ARPACK (1996)

  20. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 8th ed. (Dover, New York, 1972) eq. 25.4.14, p. 886

  21. N. Carjan, M. Rizea, Phys. Rev. C 82, 014617 (2010)

    Article  ADS  Google Scholar 

  22. R. Capote, N. Carjan, S. Chiba, Phys. Rev. C 93, 024609 (2016)

    Article  ADS  Google Scholar 

  23. V. Pashkevich, Nucl. Phys. A 169, 275 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rizea.

Additional information

Communicated by F. Gulminelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizea, M., Carjan, N. Fourier transforms of single-particle wave functions in cylindrical coordinates. Eur. Phys. J. A 52, 368 (2016). https://doi.org/10.1140/epja/i2016-16368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16368-6

Navigation