Skip to main content

Advertisement

Log in

Energy and centrality dependence of dNch/d\(\eta\) and dET/d\(\eta\) in heavy-ion collisions from \(\sqrt{s_{NN}} = 7.7\) GeV to 5.02 TeV

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The centrality dependence of pseudorapidity density of charged particles and transverse energy is studied for a wide range of collision energies for heavy-ion collisions at midrapidity from 7.7GeV to 5.02TeV. A two-component model approach has been adopted to quantify the soft and hard components of particle production, coming from nucleon participants and binary nucleon-nucleon collisions, respectively. Within experimental uncertainties, the hard component contributing to the particle production has been found not to show any clear collision energy dependence from RHIC to LHC. The effect of centrality and collision energy in particle production seems to factor out with some degree of dependency on the collision species. The collision of uranium-like deformed nuclei opens up new challenges in understanding the energy-centrality factorization, which is evident from the centrality dependence of transverse energy density, when compared to collision of symmetric nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Collins, M.J. Perry, Phys. Rev. Lett. 34, 1353 (1975)

    Article  ADS  Google Scholar 

  2. J.D. Bjorken, Phys. Rev. D 27, 140 (1983)

    Article  ADS  Google Scholar 

  3. F. Karsch, Nucl. Phys. A 698, 199c (2002)

    Article  ADS  Google Scholar 

  4. BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005)

    Article  Google Scholar 

  5. PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  6. STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  7. R. Sahoo, A.N. Mishra, Int. J. Mod. Phys. E 23, 1450024 (2014)

    Article  ADS  Google Scholar 

  8. E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 70, 533 (2010)

    Article  ADS  Google Scholar 

  9. E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 94, 011501 (2016)

    Article  ADS  Google Scholar 

  10. E.K.G. Sarkisyan, A.N. Mishra, R. Sahoo, A.S. Sakharov, Phys. Rev. D 93, 054046 (2016) Phys. Rev. D 93

    Article  ADS  Google Scholar 

  11. A.N. Mishra, R. Sahoo, E.K.G. Sarkisyan, A.S. Sakharov, Eur. Phys. J. C 74, 3147 (2014) Eur. Phys. J. C 75

    Article  ADS  Google Scholar 

  12. M. Kataja et al., Phys. Rev. D 34, 2755 (1986)

    Article  ADS  Google Scholar 

  13. H. Elze, P.A. Carruthers, About entropy and thermalization - a miniworkshop perspective in Proceedings of the NATO Advanced Research Workshop on Hot Hadronic Matter, edited by J. Letessier (Plenum Press, New York, 1995) p. 241, hep-ph/9409248

  14. C.Y. Wong, Phys. Rev. C 78, 054902 (2008)

    Article  ADS  Google Scholar 

  15. X. Wang, M. Gyulassy, Phys. Rev. Lett. 86, 3496 (2001)

    Article  ADS  Google Scholar 

  16. R. Sahoo et al., Adv. High Energy Phys. 2015, 612390 (2015) arXiv:1408.5773 and references therein

    Article  Google Scholar 

  17. K.J. Eskola, K. Kajantie, J. Lindfors, Nucl. Phys. B 323, 37 (1989)

    Article  ADS  Google Scholar 

  18. K.J. Eskola, K. Kajantie, Z. Phys. C 75, 515 (1997)

    Article  Google Scholar 

  19. X. Wang, Phys. Rev. D 43, 104 (1991)

    Article  ADS  Google Scholar 

  20. G.C. Nayak, V. Ravishankar, Phys. Rev. D 55, 6877 (1997)

    Article  ADS  Google Scholar 

  21. G.C. Nayak, V. Ravishankar, Phys. Rev. C 58, 356 (1998)

    Article  ADS  Google Scholar 

  22. R.S. Bhalerao, G. Nayak, Phys. Rev. C 61, 054907 (2000)

    Article  ADS  Google Scholar 

  23. X. Wang, M. Gyulassy, Phys. Rev. D 44, 11 (1991)

    Google Scholar 

  24. D. Kharzeev, M. Nardi, Phys. Lett. B 507, 121 (2001)

    Article  ADS  Google Scholar 

  25. X.N. Wang, Phys. Rep. 280, 287 (1997)

    Article  ADS  Google Scholar 

  26. B. Andersson, G. Gustafson, G. Ingelman, T. Sjostrand, Phys. Rep. 97, 31 (1983)

    Article  ADS  Google Scholar 

  27. X. Wang, M. Gyulassy, Comput. Phys. Commun. 83, 307 (1994)

    Article  ADS  Google Scholar 

  28. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Annu. Rev. Nucl. Part. Sci. 57, 20543 (2007)

    Article  Google Scholar 

  29. ALICE Collaboration (B. Abelev et al.), Phys. Rev. C 88, 044909 (2013)

    Article  ADS  Google Scholar 

  30. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 89, 044905 (2014)

    Article  ADS  Google Scholar 

  31. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 70, 021902 (2004)

    Article  Google Scholar 

  32. D. Miskowiec, http://www.gsi.de/misko/overlap/

  33. PHENIX Collaboration (A. Adare et al.), Phys. Rev. C 93, 024901 (2016)

    Article  ADS  Google Scholar 

  34. PHENIX Collaboration (A. Iordanova), J. Phys. Conf. Ser. 458, 012004 (2013)

    Article  ADS  Google Scholar 

  35. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 71, 034908 (2005) Phys. Rev. C 71

    Article  Google Scholar 

  36. ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 106, 032301 (2011)

    Article  ADS  Google Scholar 

  37. ALICE Collaboration (J. Adam et al.), Phys. Rev. Lett. 116, 222302 (2016)

    Article  ADS  Google Scholar 

  38. ALICE Collaboration (J. Adam et al.), Phys. Rev. C 94, 034903 (2016)

    Article  ADS  Google Scholar 

  39. ALICE Collaboration (K. Aamodt et al.), Eur. Phys. J. C 68, 89 (2010)

    Article  ADS  Google Scholar 

  40. CMS Collaboration (V. Khachatryan et al.), J. High Energy Phys. 02, 041 (2010)

    Google Scholar 

  41. UA5 Collaboration (G.J. Alner et al.), Z. Phys. C 33, 1 (1986)

    Article  Google Scholar 

  42. UA5 Collaboration (G.J. Alner et al.), Phys. Rep. 154, 247 (1987)

    Article  ADS  Google Scholar 

  43. CDF Collaboration (F. Abe et al.), Phys. Rev. D 41, 2330 (1990)

    Article  Google Scholar 

  44. PHOBOS Collaboration (B. Alver et al.), Phys. Rev. C 83, 024913 (2011)

    Article  Google Scholar 

  45. PHOBOS Collaboration (B.B. Back et al.), Phys. Rev. C 65, 061901 (2002)

    Article  Google Scholar 

  46. Leo Zhou, George S.F. Stephans, Phys. Rev. C 90, 014902 (2014)

    Article  ADS  Google Scholar 

  47. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003)

    Article  Google Scholar 

  48. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 172302 (2003)

    Article  Google Scholar 

  49. U. Heinz, A. Kuhlman, Phys. Rev. Lett. 94, 132301 (2005)

    Article  ADS  Google Scholar 

  50. A. Accardi, Phys. Rev. C 64, 064905 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghunath Sahoo.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath Mishra, A., Sahoo, R., Sahoo, P. et al. Energy and centrality dependence of dNch/d\(\eta\) and dET/d\(\eta\) in heavy-ion collisions from \(\sqrt{s_{NN}} = 7.7\) GeV to 5.02 TeV. Eur. Phys. J. A 52, 319 (2016). https://doi.org/10.1140/epja/i2016-16319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16319-3

Navigation