Skip to main content
Log in

Directed flow is a sensitive probe of deconfinement transition

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Analysis of available data on directed flow (\(v_{1}\)) of protons, antiprotons and pions in heavy-ion collisions is performed in the range of incident energies relevant to the Nuclotron-based Ion Collider Facility (NICA). Simulations have been done within a three-fluid model employing a purely hadronic equation of state (EoS) and two versions of the EoS involving deconfinement transitions: a first-order phase transition and a smooth crossover transition. High sensitivity of the directed flow, especially the proton one, to onset of the deconfinement transition is found. The crossover EoS is favored by the majority of the considered experimental data. Future data from NICA could clarify certain inconsistency of data at \( E_{lab} = 2-8\) A·GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Danielewicz, G. Odyniec, Phys. Lett. B 157, 146 (1985)

    Article  ADS  Google Scholar 

  2. S. Voloshin, Y. Zhang, Z. Phys. C 70, 665 (1996)

    Article  Google Scholar 

  3. S.A. Voloshin, A.M. Poskanzer, R. Snellings, in Landolt-Börnstein New Ser., Vol. I/23, edited by R. Stock (Springer-Verlag, 2010) pp. 5--54

  4. H. Sorge, Phys. Rev. Lett. 78, 2309 (1997)

    Article  ADS  Google Scholar 

  5. N. Herrmann, J.P. Wessels, T. Wienold, Annu. Rev. Nucl. Part. Sci. 49, 581 (1999)

    Article  ADS  Google Scholar 

  6. P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002)

    Article  ADS  Google Scholar 

  7. V.N. Russkikh, Yu.B. Ivanov, Phys. Rev. C 74, 034904 (2006)

    Article  ADS  Google Scholar 

  8. C.M. Hung, E.V. Shuryak, Phys. Rev. Lett. 75, 4003 (1995)

    Article  ADS  Google Scholar 

  9. D.H. Rischke, Y. Pursun, J.A. Maruhn, H. Stöcker, W. Greiner, Heavy Ion Phys. 1, 309 (1995)

    Google Scholar 

  10. D.H. Rischke, Nucl. Phys. A 610, 88 (1996)

    Article  ADS  Google Scholar 

  11. E877 Collaboration (J. Barrette et al.), Phys. Rev. C 56, 3254 (1997)

    Article  Google Scholar 

  12. E895 Collaboration (H. Liu et al.), Phys. Rev. Lett. 84, 5488 (2000)

    Article  Google Scholar 

  13. L.P. Csernai, D. Rohrich, Phys. Lett. B 458, 454 (1999)

    Article  ADS  Google Scholar 

  14. J. Brachmann, S. Soff, A. Dumitru, H. Stöcker, J.A. Maruhn, W. Greiner, D.H. Rischke, Phys. Rev. C 61, 024909 (2000)

    Article  ADS  Google Scholar 

  15. H. Stöcker, Nucl. Phys. A 750, 121 (2005)

    Article  ADS  Google Scholar 

  16. R.J.M. Snellings, H. Sorge, S.A. Voloshin, F.Q. Wang, N. Xu, Phys. Rev. Lett. 84, 2803 (2000)

    Article  ADS  Google Scholar 

  17. NA49 Collaboration (C. Alt et al.), Phys. Rev. C 68, 034903 (2003)

    Article  Google Scholar 

  18. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. Lett. 112, 162301 (2014)

    Article  ADS  Google Scholar 

  19. J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, H. Stöcker, Phys. Rev. C 89, 054913 (2014)

    Article  ADS  Google Scholar 

  20. V.P. Konchakovski, W. Cassing, Y.B. Ivanov, V.D. Toneev, Phys. Rev. C 90, 014903 (2014)

    Article  ADS  Google Scholar 

  21. Y.B. Ivanov, A.A. Soldatov, Phys. Rev. C 91, 024915 (2015)

    Article  ADS  Google Scholar 

  22. V.M. Galitsky, I.N. Mishustin, Sov. J. Nucl. Phys. 29, 181 (1979)

    Google Scholar 

  23. A.S. Khvorostukhin, V.V. Skokov, K. Redlich, V.D. Toneev, Eur. Phys. J. C 48, 531 (2006)

    Article  ADS  Google Scholar 

  24. Yu.B. Ivanov, V.N. Russkikh, V.D. Toneev, Phys. Rev. C 73, 044904 (2006)

    Article  ADS  Google Scholar 

  25. Yu.B. Ivanov, Phys. Rev. C 87, 064904 (2013)

    Article  ADS  Google Scholar 

  26. Yu.B. Ivanov, Phys. Rev. C 87, 064905 (2013)

    Article  ADS  Google Scholar 

  27. Yu.B. Ivanov, Phys. Rev. C 89, 024903 (2014)

    Article  ADS  Google Scholar 

  28. Yu.B. Ivanov, Phys. Lett. B 721, 123 (2013)

    Article  ADS  Google Scholar 

  29. Yu.B. Ivanov, Phys. Lett. B 726, 422 (2013)

    Article  ADS  Google Scholar 

  30. Yu.B. Ivanov, Phys. Lett. B 723, 475 (2013)

    Article  ADS  Google Scholar 

  31. Y.B. Ivanov, A.A. Soldatov, Phys. Rev. C 91, 024914 (2015)

    Article  ADS  Google Scholar 

  32. S.A. Bass, R. Mattiello, H. Stoöcker, W. Greiner, C. Hartnack, Phys. Lett. B 302, 381 (1993)

    Article  ADS  Google Scholar 

  33. Yu.B. Ivanov, V.N. Russkikh, Phys. Rev. C 78, 064902 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Ivanov.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.B., Soldatov, A.A. Directed flow is a sensitive probe of deconfinement transition. Eur. Phys. J. A 52, 246 (2016). https://doi.org/10.1140/epja/i2016-16246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16246-3

Navigation