Skip to main content
Log in

Quark and pion effective couplings from polarization effects

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

A flavor SU(2) effective model for pions and quarks is derived by considering polarization effects departing from the usual quark-quark effective interaction induced by dressed gluon exchange, i.e. a global color model for QCD. For that, the quark field is decomposed into a component that yields light mesons and the quark-antiquark condensate, being integrated out by means of the auxiliary field method, and another component which yields constituent quarks, which is basically a background quark field. Within a long-wavelength and weak quark field expansion (or large quark effective mass expansion) of a quark determinant, the leading terms are found up to the second order in a zero-order derivative expansion, by neglecting vector mesons that are considerably heavier than the pion. Pions are considered in the structureless limit and, besides the chiral invariant terms that reproduce previously derived expressions, symmetry breaking terms are also presented. The leading chiral quark-quark effective couplings are also found corresponding to a NJL and a vector-NJL couplings. All the resulting effective coupling constants and parameters are expressed in terms of the current and constituent quark masses and of the coupling g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Brambilla et al., Eur. Phys. J. C 74, 2981 (2014)

    Article  Google Scholar 

  2. H. Kleinert, On the Hadronization of Quark Theories, in Understanding the Fundamental Constituents of Matter, Lectures presented at the Erice Summer Institute 1976, edited by A. Zichichi (Plenum Press, New York, 1978) p. 289

  3. D. Ebert, H. Reinhardt, M.K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994)

    Article  ADS  Google Scholar 

  4. D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986)

    Article  ADS  Google Scholar 

  5. S. Weinberg, Phys. Rev. Lett. 105, 261601 (2010)

    Article  ADS  Google Scholar 

  6. C.D. Roberts, R.T. Cahill, J. Praschifka, Ann. Phys. 188, 20 (1988)

    Article  ADS  Google Scholar 

  7. J. Praschifka, C.D. Roberts, R.T. Cahill, Phys. Rev. D 36, 209 (1987)

    Article  ADS  Google Scholar 

  8. J. Praschifka, C.D. Roberts, R.T. Cahill, Int. J. Mod. Phys. A 2, 1797 (1987)

    Article  ADS  Google Scholar 

  9. M. Vujinovic, R. Williams, Eur. Phys. J. C 75, 100 (2015)

    Article  ADS  Google Scholar 

  10. S. Weinberg, Physica A 96, 327 (1979)

    Article  ADS  Google Scholar 

  11. J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Scherer, Eur. Phys. J. A 28, 59 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Scherer, Prog. Part. Nucl. Phys. 64, 1 (2010)

    Article  ADS  Google Scholar 

  14. I. Zahed, G.E. Brown, Phys. Rep. 142, 1 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yu.A. Simonov, Phys. Rev. D 65, 094018 (2002)

    Article  ADS  Google Scholar 

  16. A.A. Osipov, B. Hiller, A.H. Blin, Eur. Phys. J. A 49, 14 (2013)

    Article  ADS  Google Scholar 

  17. M. De Sanctis, P. Quintero, Eur. Phys. J. A 39, 145 (2009)

    Article  ADS  Google Scholar 

  18. A. Gezerlis et al., Phys. Rev. C 90, 054323 (2014)

    Article  ADS  Google Scholar 

  19. U. van Kolck, L.J. Abu-Raddad, D.M. Cardamone, AIP Conf. Proc. 631, 191 (2003)

    Article  ADS  Google Scholar 

  20. S.R. Beane, M.J. Savage, Phys. Rev. D 70, 074029 (2004)

    Article  ADS  Google Scholar 

  21. M.R. Pennington, arXiv:hep-ph/0207220

  22. D.W. McKay, H.J. Munczek, Phys. Rev. D 32, 266 (1985)

    Article  ADS  Google Scholar 

  23. A.V. Manohar, Large N QCD, Les Houches Lectures 1997, arXiv:[hep-ph] 9802419

  24. G.'t Hooft, Nucl. Phys. B 72, 461 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  26. E. de Rafael, Phys. Lett. B 703, 60 (2011)

    Article  ADS  Google Scholar 

  27. M. Lavelle, D. McMullan, Phys. Rep. 279, 1 (1997)

    Article  ADS  Google Scholar 

  28. A.W. Thomas, Nucl. Phys. B Proc. Suppl. 119, 50 (2003)

    Article  ADS  Google Scholar 

  29. R.D. Young, D.B. Leinweber, A.W. Thomas, Prog. Part. Nucl. Phys. 50, 399 (2003) and references therein

    Article  ADS  Google Scholar 

  30. E. Barros jr., F.L. Braghin, Phys. Rev. D 88, 034011 (2013)

    Article  ADS  Google Scholar 

  31. A. Paulo jr., F.L. Braghin, Phys. Rev. D 90, 014049 (2014)

    Article  ADS  Google Scholar 

  32. S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  33. U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991)

    Article  ADS  Google Scholar 

  34. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 1 (1994)

    Article  Google Scholar 

  35. E. Epelbaum, H. Krebs, D. Lee, U.-G. Meissner, Eur. Phys. J. A 45, 335 (2010)

    Article  ADS  Google Scholar 

  36. A.W. Thomas, D.B. Leinweber, R.D. Young, Eur. Phys. J. A 18, 241 (2003)

    Article  ADS  Google Scholar 

  37. R. Alkofer et al., Ann. Phys. 324, 106 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. For example in J. Greensite, An Introduction to the Confinement Problem (Springer, Heildelberg, 2011)

  39. S.J. Brodsky, R. Shrock, Phys. Lett. B 666, 95 (2008) arXiv:0803.2541

    Article  ADS  Google Scholar 

  40. S.J. Brodsky, R. Shrock, Proc. Natl. Acad. Sci. U.S.A. 108, 45 (2011) arXiv:0803.2554

    Article  ADS  Google Scholar 

  41. H. Reinhardt, H. Weigel, Phys. Rev. D 85, 074029 (2012)

    Article  ADS  Google Scholar 

  42. G.'t Hooft, Phys. Rev. 14, 3432 (1976)

    Article  Google Scholar 

  43. E. Shuryak, Phys. Rep. 264, 357 (1996)

    Article  ADS  Google Scholar 

  44. E. Shuryak, Phys. Rep. 391, 381 (2004)

    Article  ADS  Google Scholar 

  45. Th. Schaffer, E. Shuryak, arXiv:hep-lat/0005025, and references therein

  46. J.M. Cornwall, Phys. Rev. D 83, 076001 (2011)

    Article  ADS  Google Scholar 

  47. A. Doff, F.A. Machado, A.A. Natale, New J. Phys. 14, 103043 (2012)

    Article  ADS  Google Scholar 

  48. D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B 742, 183 (2015) and references therein

    Article  ADS  Google Scholar 

  49. Ken-Ichi Kondo, Phys. Rev. D 57, 7467 (1998)

    Article  ADS  Google Scholar 

  50. K.-I. Kondo, S. Kato, A. Shibata, T. Shinohara, arXiv:1409.1599 [hep-th]

  51. L.F. Abbott, Acta Phys. Pol. B 13, 33 (1982)

    MathSciNet  Google Scholar 

  52. S. Weinberg, The Quantum Theory of Fields, Vol. II (Cambridge University Press, 1996)

  53. E. Witten, Nucl. Phys. B 160, 57 (1979)

    Article  ADS  Google Scholar 

  54. A.A. Andrianov, D. Espriu, R. Tarrach, Nucl. Phys. B 533, 429 (1998)

    Article  ADS  Google Scholar 

  55. P. Costa, O. Oliveira, P.J.A. Silva, Phys. Lett. B 695, 454 (2011)

    Article  ADS  Google Scholar 

  56. J.L. Cortés, J. Gamboa, L. Velásquez, Phys. Lett. B 432, 397 (1998)

    Article  ADS  Google Scholar 

  57. K.-I. Kondo, Phys. Rev. D 82, 065024 (2010)

    Article  ADS  Google Scholar 

  58. O. Oliveira, P. Bicudo, J. Phys. G 38, 045003 (2011)

    Article  ADS  Google Scholar 

  59. G. Kalbermann, Phys. Rev. D 33, 1987 (1986)

    Article  ADS  Google Scholar 

  60. M. Bando, T. Kugo, K. Yamawaki, Phys. Rep. 164, 217 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  61. U.G. Meissner, Phys. Rep. 161, 213 (1988)

    Article  ADS  Google Scholar 

  62. S. Weinberg, Phys. Rev. Lett. 18, 188 (1967)

    Article  ADS  Google Scholar 

  63. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    Article  ADS  Google Scholar 

  64. Lai-Him Chan, Phys. Rev. Lett. 57, 1199 (1986)

    Article  ADS  Google Scholar 

  65. O. Cheyette, PhD Thesis, LBL - UCB (1987)

  66. A. Bender, C.D. Roberts, L.v. Smekal, Phys. Lett. B 380, 7 (1996)

    Article  ADS  Google Scholar 

  67. P. Maris, C.D. Roberts, Phys. Rev. C 56, 3369 (1997)

    Article  ADS  Google Scholar 

  68. S.-X. Qin et al., Phys. Rev. C 85, 035202 (2012)

    Article  ADS  Google Scholar 

  69. S. Weinberg, Phys. Rev. Lett. 67, 3473 (1991)

    Article  ADS  Google Scholar 

  70. S. Weinberg, Phys. Rev. Lett. 65, 1181 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  71. D.A. Dicus, D. Minic, U. van Kolck, Phys. Lett. B 284, 384 (1992)

    Article  ADS  Google Scholar 

  72. W. Broniowski, M. Lutz, A. Steiner, Phys. Rev. Lett. 71, 1787 (1993)

    Article  ADS  Google Scholar 

  73. H. Abuki, R. Gatto, M. Ruggieri, Phys. Rev. D 80, 074019 (2009)

    Article  ADS  Google Scholar 

  74. J. Sugano et al., Phys. Rev. D 90, 037901 (2014) arXiv[hep-ph]1405.0103

    Article  ADS  Google Scholar 

  75. D.P. Menezes et al., Phys. Rev. C 89, 055207 (2014)

    Article  ADS  Google Scholar 

  76. U. Mosel, Path Integrals in Field Theory, An Introduction (Springer, 2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio L. Braghin.

Additional information

Communicated by Shi-Lin Zhu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braghin, F. Quark and pion effective couplings from polarization effects. Eur. Phys. J. A 52, 134 (2016). https://doi.org/10.1140/epja/i2016-16134-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16134-x

Keywords

Navigation