Skip to main content
Log in

Geant4 simulation of the n_TOF-EAR2 neutron beam: Characteristics and prospects

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The characteristics of the neutron beam at the new n_TOF-EAR2 facility have been simulated with the Geant4 code with the aim of providing useful data for both the analysis and planning of the upcoming measurements. The spatial and energy distributions of the neutrons, the resolution function and the in-beam \( \gamma\)-ray background have been studied in detail and their implications in the forthcoming experiments have been discussed. The results confirm that, with this new short (18.5m flight path) beam line, reaching an instantaneous neutron flux beyond 105n/μs/pulse in the keV region, n_TOF is one of the few facilities where challenging measurements can be performed, involving in particular short-lived radioisotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WPEC Subgroup 31 (SG31), Meeting Nuclear Data Needs for Advanced Reactor Systems (Nuclear Energy Agency, OECD, 2014) NEA/NSC/WPEC/DOC(2014)446

  2. U. Fischer et al., Nucl. Data Sheets 120, 226 (2014)

    Article  ADS  Google Scholar 

  3. F. Kaeppeler, R. Gallino, S. Bisterzo, W. Aoki, Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  4. A.L. Nichols, R. Capote, Nucl. Data Sheets 120, 239 (2014)

    Article  ADS  Google Scholar 

  5. J.T. Goorley, W.S. Kiger III, R.G. Zamenhof, Med. Phys. 29, 145 (2002)

    Article  Google Scholar 

  6. The n_TOF Collaboration (C. Guerrero et al.), Eur. Phys. J. A 49, 27 (2013)

    Article  Google Scholar 

  7. C. Weiss et al., Nucl. Instrum. Methods A 799, 90 (2015)

    Article  ADS  Google Scholar 

  8. D. Ene, C. Borcea, S. Kopecky, W. Mondelaers, A. Negret, A.J.M. Plompen, Nucl. Instrum. Methods A 618, 54 (2010)

    Article  ADS  Google Scholar 

  9. K. Kino et al., Nucl. Instrum. Methods A 626, 58 (2011)

    Article  ADS  Google Scholar 

  10. P. Koehler, Nucl. Instrum. Methods A 292, 541 (1990)

    Article  ADS  Google Scholar 

  11. S. Barros, I. Bergstrom, V. Vlachoudis, C. Weiss et al., JINST 10, P09003 (2015)

    Article  ADS  Google Scholar 

  12. http://www.fluka.org

  13. G. Battistoni et al., AIP Conf. Proc. 896, 31 (2007)

    Article  ADS  Google Scholar 

  14. A. Ferrari, FLUKA: A Multi-Particle Transport Code, CERN-2005-10, INFN/TC_05/11, SLAC-R-773 (2005)

  15. H. Iwase, K. Niita, T. Nakamura, J. Nucl. Sci. Technol. 39, 1142 (2002)

    Article  Google Scholar 

  16. D.B. Pelowitz (Editor), MCNPX User’s Manual, Version 2.7.0, Los Alamos National Laboratory report, LA-CP-11-00438 (2011).

  17. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  18. E. Mendoza, D. Cano-Ott, T. Koi, C. Guerrero, IEEE Trans. Nucl. Sci. 61, 2357 (2014)

    Article  ADS  Google Scholar 

  19. S. Lo Meo, M.A. Cortés-Giraldo, C. Massimi, J. Lerendegui-Marco et al., Eur. Phys. J. A 51, 160 (2015)

    Article  ADS  Google Scholar 

  20. The n_TOF Collaboration (M. Barbagallo et al.), Eur. Phys. J. A 49, 156 (2013)

    Article  Google Scholar 

  21. B. Andersson et al., Nucl. Phys. B 281, 289 (1987)

    Article  ADS  Google Scholar 

  22. B. Nilsson et al., Comput. Phys. Commun. 43, 387 (1987)

    Article  ADS  Google Scholar 

  23. GEANT4 Physics Reference and User Manuals, available at http://geant4.cern.ch

  24. A. Boudard et al., Phys. Rev. C 87, 014606 (2013)

    Article  ADS  Google Scholar 

  25. D. Mancusi et al., Phys. Rev. C 90, 054602 (2014)

    Article  ADS  Google Scholar 

  26. A. Heikkinen, Bertini intra-nuclear cascade implementation in Geant4, in Computing in High Energy and Nuclear Physics (CHEP 2003), La Jolla, California, March 24--28, 2003, http://arxiv.org/abs/nucl-th/0306008v1

  27. A. Kelíc et al., Report INDC(NDC) 0530, 181 (2008)

    Google Scholar 

  28. www-nds.iaea.org/geant4/

  29. A. Tsinganis, E. Berthoumieux, M. Calviani, V. Vlachoudis, the n_TOF Collaboration, Measurement of the $^{240,242}Pu(n,f)$ reaction cross-section at n_TOF, CERN-INTC-2010-042

  30. A. Tsinganis, Measurement of the $^{240}Pu(n,f)$ cross-section at the CERN n_TOF facility: first results from Experimental Area II (EAR-2), in Proceedings of the 14th International Conference on Nuclear Reaction Mechanisms, Varenna, Italy, June 15--19, 2015, edited by F. Cerutti, CERN-Proceedings-2005-001

  31. R. Macklin, J. Halperin, R. Winters, Nucl. Instrum. Methods A 164, 213 (1979)

    Article  Google Scholar 

  32. F.H. Frohner, Evaluation and Analysis of Nuclear Resonance Data, JEFF Report 18, NEA/OECD (2000)

  33. G. Tagliente et al., Phys Rev. C 77, 035802 (2008)

    Article  ADS  Google Scholar 

  34. P. Mastinu, New C_6D_6 detectors: reduced neutron sensitivity and improved safety, CERN-n_TOF-PUB-2013-002 (2013)

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J. Lerendegui-Marco.

Additional information

Communicated by C. Broggini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerendegui-Marco, J., Lo Meo, S., Guerrero, C. et al. Geant4 simulation of the n_TOF-EAR2 neutron beam: Characteristics and prospects. Eur. Phys. J. A 52, 100 (2016). https://doi.org/10.1140/epja/i2016-16100-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16100-8

Navigation