Skip to main content
Log in

Hard gluon evolution of nucleon generalized parton distributions in the light-front quark model

Hard gluon evolution of nucleon GPDs

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We incorporate the perturbative evolution effects in the generalized parton distributions (GPDs) calculated in effective light-front quark model for the nucleon. The perturbative effects enter into formalism through the evolution of GPDs according to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-like (DGLAP) equation. We obtain the evolved GPDs in the momentum space and transverse impact parameter space. We observe that combining the light-front quark model with the perturbative evolution effects, give the effective model for studying the phenomenological GPDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.N. Gribov, L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  2. G. Altarelli, G. Parisi, Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  3. Yu.L. Dokshitzer, Zh. Eksp. Teor. Fiz. 73, 1216 (1977)

    Google Scholar 

  4. Yu.L. Dokshitzer, transl. Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  5. K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001)

    Article  ADS  Google Scholar 

  6. X. Ji, Annu. Rev. Nucl. Part. Sci. 54, 413 (2004)

    Article  ADS  Google Scholar 

  7. M. Guidal, M.V. Polyakov, A.V. Radyushkin, M. Vanderhaeghen, Phys. Rev. D 72, 054013 (2005)

    Article  ADS  Google Scholar 

  8. M. Diehl, Phys. Rep. 388, 41 (2003)

    Article  ADS  Google Scholar 

  9. H1 Collaboration (C. Adloff et al.), Phys. Lett. B 517, 47 (2001)

    Article  ADS  Google Scholar 

  10. ZEUS Collaboration (S. Chekanov et al.), Phys. Lett. B 573, 46 (2003)

    Article  ADS  Google Scholar 

  11. HERMES Collaboration (A. Airapetian et al.), Phys. Rev. Lett. 87, 182001 (2001)

    Article  ADS  Google Scholar 

  12. CLAS Collaboration (S. Stepanyan et al.), Phys. Rev. Lett. 87, 182002 (2001)

    Article  Google Scholar 

  13. Jefferson Lab Hall A Collaboration (C.M. Camacho et al.), Phys. Rev. Lett. 97, 262002 (2006)

    Article  Google Scholar 

  14. Jefferson Lab Hall A Collaboration (M. Mazouz et al.), Phys. Rev. Lett. 99, 242501 (2007)

    Article  Google Scholar 

  15. COMPASS Collaboration (N. D’Hose, E. Burtin, P.A.M. Guichon, J. Marroncle), Eur. Phys. J. A 19, 47 (2004)

    Article  Google Scholar 

  16. S.J. Brodsky, G.F. de Teramond, Phys. Rev. D 77, 056007 (2008)

    Article  ADS  Google Scholar 

  17. S.J. Brodsky, G.F. de Teramond, Phys. Rev. D 78, 025032 (2008)

    Article  ADS  Google Scholar 

  18. S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 105 (2015)

    Article  MathSciNet  Google Scholar 

  19. S.J. Brodsky, G.F. de Teramond, arXiv:1203.4025 [hep-ph]

  20. S.J. Brodsky, G.F. de Teramond, A. Deur, H.G. Dosch, Few-Body Syst. 56, 621 (2015)

    Article  ADS  Google Scholar 

  21. S.J. Brodsky, G.F. de Téramond, A. Deur, Phys. Rev. D 81, 096010 (2010)

    Article  ADS  Google Scholar 

  22. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 89, 054033 (2014)

    Article  ADS  Google Scholar 

  23. T. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, Phys. Rev. D 91, 054028 (2015)

    Article  ADS  Google Scholar 

  24. M. Burkardt, Phys. Rev. D 62, 071503 (2000) 66

    Article  ADS  Google Scholar 

  25. X. Ji, Phys. Rev. Lett. 78, 610 (1997)

    Article  ADS  Google Scholar 

  26. A.V. Radyushkin, Phys. Rev. D 56, 5524 (1997)

    Article  ADS  Google Scholar 

  27. S.J. Brodsky, M. Diehl, D.S. Hwang, Nucl. Phys. B 596, 99 (2001)

    Article  ADS  Google Scholar 

  28. M. Hirai, S. Kumano, M. Miyama, Comput. Phys. Commun. 108, 38 (1998)

    Article  ADS  Google Scholar 

  29. S. Kumano, J.T. Londergan, Comput. Phys. Commun. 69, 373 (1992)

    Article  ADS  Google Scholar 

  30. C. Coriano, C. Savkli, Comput. Phys. Commun. 118, 236 (1999)

    Article  ADS  Google Scholar 

  31. M. Glueck, E. Reya, A. Vogt, Z. Phys. C 48, 471 (1990)

    Article  Google Scholar 

  32. M. Botje, Eur. Phys. J. C 14, 285 (2000)

    Article  ADS  Google Scholar 

  33. M. Dehghani, Phys. Rev. D 91, 076009 (2015)

    Article  ADS  Google Scholar 

  34. M. Dehghani, Int. J. Mod. Phys. A 30, 11 1550046 (2015)

    Article  Google Scholar 

  35. Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetika Sharma.

Additional information

Communicated by S. Hands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N. Hard gluon evolution of nucleon generalized parton distributions in the light-front quark model. Eur. Phys. J. A 52, 91 (2016). https://doi.org/10.1140/epja/i2016-16091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16091-4

Keywords

Navigation