Skip to main content
Log in

Nuclear astrophysics and the Trojan Horse Method

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this review, we discuss the new recent results of the Trojan Horse Method that is used to determine reaction rates for nuclear processes in several astrophysical scenarios. The theory behind this technique is shortly presented. This is followed by an overview of some new experiments that have been carried out using this indirect approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957)

    Article  ADS  Google Scholar 

  2. W.A. Fowler, Rev. Mod. Phys. 56, 149 (1984)

    Article  ADS  Google Scholar 

  3. C. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)

  4. C. Rolfs, Prog. Part. Nucl. Phys. 46, 23 (2001)

    Article  ADS  Google Scholar 

  5. R. Bonetti et al., Phys. Rev. Lett. 82, 5205 (1999)

    Article  ADS  Google Scholar 

  6. H.J. Assenbaum, K. Langanke, C. Rolfs, Z. Phys. A 327, 461 (1987)

    ADS  Google Scholar 

  7. F. Strieder, C. Rolfs, C. Spitaleri, P. Corvisiero, Naturwissenschaften 88, 461 (2001)

    Article  ADS  Google Scholar 

  8. G. Baur, C.A. Bertulani, H. Rebel, Nucl. Phys. A 458, 188 (1986)

    Article  ADS  Google Scholar 

  9. A.M. Mukhamedzhanov et al., Phys. Rev. C 56, 1302 (1997)

    Article  ADS  Google Scholar 

  10. A.M. Mukhamedzhanov, R.E. Tribble, Phys. Rev. C 59, 3418 (1999)

    Article  ADS  Google Scholar 

  11. G. Baur, Phys. Lett. B 178, 135 (1986)

    Article  ADS  Google Scholar 

  12. C. Spitaleri, in Problems of Fundamental Modern Physics, II: Proceedings, edited by R. Cherubini, P. Dalpiaz, B. Minetti (World Scientific, 1991) p. 21

  13. S. Cherubini et al., Astrophys. J 457, 855 (1996)

    Article  ADS  Google Scholar 

  14. S. Typel, H. Wolter, Few-Body Syst. 29, 75 (2000)

    Article  ADS  Google Scholar 

  15. S. Typel, G. Baur, Ann. Phys. (N.Y.) 305, 228 (2003)

    Article  ADS  Google Scholar 

  16. A.M. Mukhamedzhanov et al., Eur. Phys. J. A 27, Suppl. 1, 205 (2006)

    Article  ADS  Google Scholar 

  17. A.M. Mukhamedzhanov et al., J. Phys. G 35, 014016 (2008)

    Article  ADS  Google Scholar 

  18. C. Spitaleri et al., Phys. At. Nucl. 74, 1725 (2011)

    Article  Google Scholar 

  19. R.E. Tribble et al., Rep. Prog. Phys. 77, 106901 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. I.S. Shapiro, Usp. Fiz. Nauk 92, 549 (1967)

    Google Scholar 

  21. I.S. Shapiro Interaction of high-energy particles with nuclei International School of Physics Enrico Fermi, Course 38, edited by E.O. Ericson (Academitices, New York, 1967) p. 210

  22. I.S. Shapiro, Sov. Phys. Usp. 10, 515 (1968)

    Article  ADS  Google Scholar 

  23. G.F. Chew, G.C. Wick, Phys. Rev. 85, 636 (1952)

    Article  ADS  Google Scholar 

  24. M. Furic et al., Phys. Lett. B 39, 629 (1972)

    Article  ADS  Google Scholar 

  25. M. Lattuada et al., Nucl. Phys. A 458, 493 (1986)

    Article  ADS  Google Scholar 

  26. M. Zadro et al., Phys. Rev. C 40, 181 (1989)

    Article  ADS  Google Scholar 

  27. G. Calvi et al., Phys. Rev. C 41, 1848 (1990)

    Article  ADS  Google Scholar 

  28. A. Tumino et al., Phys. Rev. C 78, 064001 (2008)

    Article  ADS  Google Scholar 

  29. M. Lattuada et al., Astrophys. J. 562, 1076 (2001)

    Article  ADS  Google Scholar 

  30. C. Spitaleri et al., Phys. Rev. C 63, 055801 (2001)

    Article  ADS  Google Scholar 

  31. M. La Cognata et al., Phys. Rev. C 72, 065802 (2005)

    Article  ADS  Google Scholar 

  32. A. Tumino et al., Phys. Lett. B 700, 111 (2011)

    Article  ADS  Google Scholar 

  33. A. Tumino et al., Phys. Lett. B 705, 546 (2011)

    Article  ADS  Google Scholar 

  34. A. Tumino et al., Astrophys. J. 785, 96 (2014)

    Article  ADS  Google Scholar 

  35. Q. Wen et al., Phys. Rev. C 78, 035805 (2008)

    Article  ADS  Google Scholar 

  36. L. Lamia et al., J. Phys. G 39, 015106 (2012)

    Article  ADS  Google Scholar 

  37. M.L. Sergi et al., Phys. Rev. C 91, 065803 (2015)

    Article  ADS  Google Scholar 

  38. C. Spitaleri et al., Phys. Rev. C 90, 035801 (2014)

    Article  ADS  Google Scholar 

  39. A. Tumino et al., Eur. Phys. J. A 25, 649 (2005)

    Article  Google Scholar 

  40. M. Gulino et al., J. Phys. 37, 125105 (2010)

    Article  ADS  Google Scholar 

  41. M. Gulino et al., Phys. Rev. C 87, 012801(R) (2013)

    Article  ADS  Google Scholar 

  42. E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  43. E.I. Dolinsky et al., Nucl. Phys. A 202, 97 (1973)

    Article  ADS  Google Scholar 

  44. C. Spitaleri et al., Phys. Rev. C 69, 055806 (2004)

    Article  ADS  Google Scholar 

  45. R.G. Pizzone et al., Phys. Rev. C 80, 025807 (2009)

    Article  ADS  Google Scholar 

  46. M. La Cognata et al., Eur. Phys. J. A 27, S1, 249 (2006)

    Article  ADS  Google Scholar 

  47. M. La Cognata et al., Phys. Rev. C 76, 065804 (2007)

    Article  ADS  Google Scholar 

  48. M. La Cognata et al., Phys. Rev. C 80, 012801 (2009)

    Article  Google Scholar 

  49. M. La Cognata et al., Astrophys. J. 777, 143 (2013)

    Article  ADS  Google Scholar 

  50. M. La Cognata et al., Astrophys. J. 723, 1512 (2010)

    Article  ADS  Google Scholar 

  51. M. La Cognata et al., J. Phys. G 35, 014014 (2008)

    Article  ADS  Google Scholar 

  52. C. Mahaux, H.A. Weidenmüller, Shell- Model Approach to Nuclear Reactions (North-Holland Publishing Company, Amsterdam 1969)

  53. A.M. Mukhamedzhanov et al., Phys. Rev. C 83, 044604 (2011)

    Article  ADS  Google Scholar 

  54. M. La Cognata et al., Astrophys. J. Lett. 739, 54 (2011)

    Article  ADS  Google Scholar 

  55. M. La Cognata et al., Phys. Rev. Lett. 109, 232701 (2012)

    Article  ADS  Google Scholar 

  56. E.W. Kolb, M.S. Turner, The Early Universe (Addison-Wesley, 1990)

  57. R.G. Pizzone et al., Astrophys. J. 786, 112 (2014)

    Article  ADS  Google Scholar 

  58. U. Greife et al., Z. Phys. 351, 107 (1995)

    ADS  Google Scholar 

  59. A. Krauss, H.W. Becker, H.P. Trautvetter, C. Rolfs, K. Brand, Nucl. Phys. A 465, 150 (1987)

    Article  ADS  Google Scholar 

  60. K.G. McNeill et al., Phys. Rev. 602, 81 (1951)

    Google Scholar 

  61. R.L. Schulte, Nucl. Phys. A 192, 000 (1972)

    Article  Google Scholar 

  62. N. Jarmie, R.E. Brown, Phys. Rev. C 41, 1391 (1990)

    Article  ADS  Google Scholar 

  63. A.S. Ganeev, Suppl. Sov. At. J. 5, 26 (1957)

    Google Scholar 

  64. W.B. Arnold et al., Phys. Rev. 483, 93 (1954)

    Google Scholar 

  65. F. Raiola et al., Eur. Phys. J. A 13, 377 (2002)

    Article  ADS  Google Scholar 

  66. D.S. Leonard et al., Phys. Rev. C 73, 045801 (2006)

    Article  ADS  Google Scholar 

  67. R.G. Pizzone et al., Phys. Rev. C 87, 025805 (2013)

    Article  ADS  Google Scholar 

  68. B. Bracci et al., Nucl. Phys. A 513, 316 (1990)

    Article  ADS  Google Scholar 

  69. V.A. Davidenko et al., J. Nucl. Energy 258, 2 (1957)

    Google Scholar 

  70. M.A. Hofstee et al., Nucl. Phys. A 688, 527 (2001)

    Article  ADS  Google Scholar 

  71. A.S. Belov et al., Nuovo Cimento A 103, 1647 (1990)

    Article  ADS  Google Scholar 

  72. N. Ying et al., Nucl. Phys. A 481, 206 (1973)

    Google Scholar 

  73. V.M. Bystritsky et al., Izv. Rossiiskoi Akad. Nauk. 563, 74 (2010)

    Google Scholar 

  74. S. Romano et al., Eur. Phys. J. A 27, 221 (2006)

    Article  ADS  Google Scholar 

  75. L. Lamia et al., Nuovo Cimento C 31, 423 (2008)

    ADS  Google Scholar 

  76. L. Lamia, M. La Cognata, C. Spitaleri, B. Irgaziev, R.G. Pizzone, Phys. Rev. C 85, 025805 (2012)

    Article  ADS  Google Scholar 

  77. R.G. Pizzone et al., Phys. Rev. C 83, 045801 (2011)

    Article  ADS  Google Scholar 

  78. S. Engstler et al., Phys. Lett. B 20, 279 (1992)

    Google Scholar 

  79. J. Cruz et al., Phys. Lett. B 624, 181 (2005)

    Article  ADS  Google Scholar 

  80. J. Cruz et al., J. Phys. G 35, 014004 (2008)

    Article  ADS  Google Scholar 

  81. L. Lamia et al., Astron. Astrophys. 541, 158 (2012)

    Article  ADS  Google Scholar 

  82. C. Angulo et al., Nucl. Phys. A 656, 3 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  83. L. Lamia et al., Astrophys. J. 768, 65 (2013)

    Article  ADS  Google Scholar 

  84. S. Palmerini et al., Astrophys. J. 741, 26 (2011)

    Article  ADS  Google Scholar 

  85. M. Busso et al., Astrophys. J., Lett. 717, 47 (2010)

    Article  ADS  Google Scholar 

  86. A. Tumino et al., Phys. Rev. C 67, 065803 (2003)

    Article  ADS  Google Scholar 

  87. R.G. Pizzone et al., Astron. Astrophys. 438, 779 (2005)

    Article  ADS  Google Scholar 

  88. A. Tumino, C. Spitaleri, L. Pappalardo et al., Progr. Theor. Phys. Suppl. 154, 341 (2004)

    Article  ADS  Google Scholar 

  89. R.H. Cyburt, Phys. Rev. D 70, 023505 (2010)

    Article  ADS  Google Scholar 

  90. S. Degl’Innocenti et al., Astrophys. Space Sci. 316, 25 (2008)

    Article  ADS  Google Scholar 

  91. M. Dell’Omodarme et al., Astron. Astrophys. 540, A26 (2012)

    Article  Google Scholar 

  92. E. Tognelli et al., Astron. Astrophys. 533, A109 (2011)

    Article  ADS  Google Scholar 

  93. B.S. Meyer, Annu. Rev. Astron. Astrophys. 32, 153 (1994)

    Article  ADS  Google Scholar 

  94. F. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)

    Article  ADS  Google Scholar 

  95. M. Lugaro et al., Astrophys. J. 615, 934 (2004)

    Article  ADS  Google Scholar 

  96. I. Lombardo et al., Phys. Lett. B 748, 178 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  97. A. Spyrou et al., Eur. Phys. J. A 7, 79 (2000)

    ADS  Google Scholar 

  98. G. Breuer, Z. Phys. 154, 339 (1959)

    Article  ADS  Google Scholar 

  99. H. Lorentz-Wirzba, Ph.D. thesis Universität Münster, 1978

  100. S. Lucatello et al., Astrophys. J. 729, 40 (2011)

    Article  ADS  Google Scholar 

  101. M. La Cognata et al., Astrophys. J. 805, 128 (2015)

    Article  ADS  Google Scholar 

  102. I. Lombardo et al., J. Phys. G 40, 125102 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  103. M. Busso, R. Gallino, G.J. Wasserburg, Annu. Rev. Astron. Astrophys. 37, 239 (1999)

    Article  ADS  Google Scholar 

  104. C. Iliadis, Nuclear Physics of Stars (Wiley-VCH Verlag, 2007)

  105. H.W. Drotleff et al., Astrophys. J. 414, 735 (1993)

    Article  ADS  Google Scholar 

  106. M. Heil et al., Phys. Rev. C 78, 025803 (2008)

    Article  ADS  Google Scholar 

  107. P. Descouvemont, Phys. Rev. C 36, 2206 (1987)

    Article  ADS  Google Scholar 

  108. M. Dufour, P. Descouvemont, Phys. Rev. C 72, 01580 (2005)

    Article  Google Scholar 

  109. E.D. Johnson et al., Phys. Rev. Lett. 97, 192701 (2006)

    Article  ADS  Google Scholar 

  110. G.M. Hale, Nucl. Phys. A 621, 177 (1997)

    Article  ADS  Google Scholar 

  111. S. Cherubini et al., Phys. Rev. C 92, 015805 (2015)

    Article  ADS  Google Scholar 

  112. R.G. Pizzone et al., Eur. Phys. J. A 52, 24 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Spitaleri.

Additional information

Communicated by C. Broggini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spitaleri, C., La Cognata, M., Lamia, L. et al. Nuclear astrophysics and the Trojan Horse Method. Eur. Phys. J. A 52, 77 (2016). https://doi.org/10.1140/epja/i2016-16077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16077-2

Keywords

Navigation