Skip to main content
Log in

Shell and explosive hydrogen burning

Nuclear reaction rates for hydrogen burning in RGB, AGB and Novae

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The nucleosynthesis of light elements, from helium up to silicon, mainly occurs in Red Giant and Asymptotic Giant Branch stars and Novae. The relative abundances of the synthesized nuclides critically depend on the rates of the nuclear processes involved, often through non-trivial reaction chains, combined with complex mixing mechanisms. In this paper, we summarize the contributions made by LUNA experiments in furthering our understanding of nuclear reaction rates necessary for modeling nucleosynthesis in AGB stars and Novae explosions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Best et al., Eur. Phys. J. A 52, 72 (2016) contribution to this Topical Issue

    Article  Google Scholar 

  2. A.I. Boothroyd, I.-J. Sackmann, Astrophys. J. 510, 232 (1999)

    Article  ADS  Google Scholar 

  3. C. Abia, S. Palmerini, M. Busso, S. Cristallo, Astron. Astrophys. 548, A55 (2012)

    Article  ADS  Google Scholar 

  4. S. Palmerini, M. La Cognata, S. Cristallo, M. Busso, Astrophys. J. 729, 3 (2011)

    Article  ADS  Google Scholar 

  5. L.R. Nittler, C.M.O. Alexander, X. Gao, R.M. Walker, E. Zinner, Nucl. Phys. A 621, 113 (1997)

    Article  ADS  Google Scholar 

  6. M.C. Nucci, M. Busso, Astrophys. J. 787, 141 (2014)

    Article  ADS  Google Scholar 

  7. P. Marigo, A. Bressan, A. Nanni, L. Girardi, M.L. Pumo, Mon. Not. R. Astron. Soc. 434, 488 (2013)

    Article  ADS  Google Scholar 

  8. C. Angulo et al., Nucl. Phys. A 656, 3 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. P.J. LeBlanc et al., Phys. Rev. C 82, 055804 (2010)

    Article  ADS  Google Scholar 

  10. A. Di Leva et al., Phys. Rev. C 89, 015803 (2014) 90

    Article  ADS  Google Scholar 

  11. C. Iliadis, R. Longland, A.E. Champagne, A. Coc, Nucl. Phys. A 841, 251 (2010)

    Article  ADS  Google Scholar 

  12. O. Straniero et al., Astrophys. J. 763, 100 (2013)

    Article  ADS  Google Scholar 

  13. O. Straniero, R. Gallino, S. Cristallo, Nucl. Phys. A 777, 311 (2006)

    Article  ADS  Google Scholar 

  14. A. Renzini, M. Voli, Astron. Astrophys. 94, 175 (1981)

    ADS  Google Scholar 

  15. J. José, M. Hernanz, J. Phys. G 34, 431 (2007)

    Article  ADS  Google Scholar 

  16. M.F. Bode, A. Evans (Editors), Classical Novae, no. 43 in Cambridge Astrophysics Series (Cambridge University Press, 2008)

  17. C. Iliadis, A. Champagne, J. José, S. Starrfield, P. Tupper, Astrophys. J. Suppl. Ser. 142, 105 (2002)

    Article  ADS  Google Scholar 

  18. R. Diehl, Rep. Prog. Phys. 76, 026301 (2013)

    Article  ADS  Google Scholar 

  19. F. Herwig, Annu. Rev. Astron. Astrophys. 43, 435 (2005)

    Article  ADS  Google Scholar 

  20. A.I. Karakas, M. Lugaro, C. Ugalde, M. Wiescher, J. Görres, New Astron. Rev. 50, 500 (2006)

    Article  ADS  Google Scholar 

  21. E. Carretta, A. Bragaglia, R. Gratton, S. Lucatello, Astron. Astrophys. 505, 139 (2009)

    Article  ADS  Google Scholar 

  22. P. Ventura, F. D’Antona, Astron. Astrophys. 457, 995 (2006)

    Article  ADS  Google Scholar 

  23. R.G. Izzard, M. Lugaro, A.I. Karakas, C. Iliadis, M. van Raai, Astron. Astrophys. 466, 641 (2007)

    Article  ADS  Google Scholar 

  24. J. José, A. Coc, M. Hernanz, Astrophys. J. 520, 347 (1999)

    Article  ADS  Google Scholar 

  25. J. José, M. Hernanz, S. Amari, K. Lodders, E. Zinner, Astrophys. J. 612, 414 (2004)

    Article  ADS  Google Scholar 

  26. M. Limongi, A. Chieffi, Astrophys. J. 647, 483 (2006)

    Article  ADS  Google Scholar 

  27. D.C. Abbott, P.S. Conti, Annu. Rev. Astron. Astrophys. 25, 113 (1987)

    Article  ADS  Google Scholar 

  28. K. Cunha, V.V. Smith, Astrophys. J. 651, 491 (2006)

    Article  ADS  Google Scholar 

  29. G. Gilli, G. Israelian, A. Ecuvillon, N.C. Santos, M. Mayor, Astron. Astrophys. 449, 723 (2006)

    Article  ADS  Google Scholar 

  30. R. Diehl et al., Astron. Astrophys. 298, 445 (1995)

    ADS  Google Scholar 

  31. L. Bouchet, E. Jourdain, J.-P. Roques, Astrophys. J. 801, 142 (2015)

    Article  ADS  Google Scholar 

  32. N. Mowlavi, G. Meynet, Astron. Astrophys. 361, 959 (2000)

    ADS  Google Scholar 

  33. A. Palacios et al., Astron. Astrophys. 429, 613 (2005)

    Article  ADS  Google Scholar 

  34. M. Guelin et al., Astron. Astrophys. 297, 183 (1995)

    ADS  Google Scholar 

  35. J. Kodolányi, P. Hoppe, E. Gröner, C. Pauly, F. Mücklich, Geochim. Cosmochim. Acta 140, 577 (2014)

    Article  ADS  Google Scholar 

  36. Y. Fenner, M.T. Murphy, B.K. Gibson, Mon. Not. R. Astron. Soc. 358, 468 (2005)

    Article  ADS  Google Scholar 

  37. J. Meléndez, J.G. Cohen, Astrophys. J. Lett. 659, L25 (2007)

    Article  ADS  Google Scholar 

  38. C. Iliadis, Nuclear Physics of Stars (Wiley-VCH Verlag, Wenheim, Germany, 2007)

  39. P. Descouvemont, D. Baye, Rep. Prog. Phys. 73, 036301 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  40. A.M. Mukhamedzhanov, R.E. Tribble, Phys. Rev. C 59, 3418 (1999)

    Article  ADS  Google Scholar 

  41. C. Rolfs, W.S. Rodney, Nucl. Phys. A 235, 450 (1974)

    Article  ADS  Google Scholar 

  42. A.M. Mukhamedzhanov et al., Phys. Rev. C 78, 015804 (2008)

    Article  ADS  Google Scholar 

  43. A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003)

    Article  ADS  Google Scholar 

  44. F. Strieder et al., Phys. Lett. B 707, 60 (2012)

    Article  ADS  Google Scholar 

  45. G. Imbriani et al., Eur. Phys. J. A 25, 455 (2005)

    Article  ADS  Google Scholar 

  46. F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990)

    Article  ADS  Google Scholar 

  47. H. Costantini et al., Nucl. Phys. A 814, 144 (2008)

    Article  ADS  Google Scholar 

  48. A. Caciolli et al., Eur. Phys. J. A 48, 144 (2012)

    Article  ADS  Google Scholar 

  49. G.R. Caughlan, W.A. Fowler, Astrophys. J. 136, 453 (1962)

    Article  ADS  Google Scholar 

  50. D. Bemmerer et al., J. Phys. G 36, 045202 (2009)

    Article  ADS  Google Scholar 

  51. A. Caciolli et al., Astron. Astrophys. 533, A66 (2011)

    Article  ADS  Google Scholar 

  52. D. Hebbard, Nucl. Phys. 15, 289 (1960)

    Article  Google Scholar 

  53. F.C. Barker, Phys. Rev. C 78, 044612 (2008)

    Article  ADS  Google Scholar 

  54. G. Imbriani et al., Phys. Rev. C 85, 065810 (2012)

    Article  ADS  Google Scholar 

  55. R.J. deBoer et al., Phys. Rev. C 87, 015802 (2013)

    Article  ADS  Google Scholar 

  56. A.M. Mukhamedzhanov, M. La Cognata, V. Kroha, Phys. Rev. C 83, 044604 (2011)

    Article  ADS  Google Scholar 

  57. M. Aliotta, Helium burning and neutron sources in the stars, contribution to this Topical Issue

  58. H.-B. Mak et al., Nucl. Phys. A 343, 79 (1980)

    Article  ADS  Google Scholar 

  59. V. Landre et al., Phys. Rev. C 40, 1972 (1989)

    Article  ADS  Google Scholar 

  60. C. Rolfs, Nucl. Phys. A 217, 29 (1973)

    Article  ADS  Google Scholar 

  61. C. Fox et al., Phys. Rev. Lett. 93, 081102 (2004)

    Article  ADS  Google Scholar 

  62. C. Fox et al., Phys. Rev. C 71, 055801 (2005)

    Article  ADS  Google Scholar 

  63. J.R. Newton et al., Phys. Rev. C 81, 045801 (2010)

    Article  ADS  Google Scholar 

  64. A. Kontos et al., Phys. Rev. C 86, 055801 (2012)

    Article  ADS  Google Scholar 

  65. M.Q. Buckner et al., Phys. Rev. C 91, 015812 (2015)

    Article  ADS  Google Scholar 

  66. A. Chafa et al., Phys. Rev. Lett. 95, 031101 (2005) 96

    Article  ADS  Google Scholar 

  67. A. Chafa et al., Phys. Rev. C 75, 035810 (2007)

    Article  ADS  Google Scholar 

  68. U. Hager et al., Phys. Rev. C 85, 035803 (2012)

    Article  ADS  Google Scholar 

  69. D.A. Scott et al., Phys. Rev. Lett. 109, 202501 (2012)

    Article  ADS  Google Scholar 

  70. M. Laubenstein et al., Appl. Radiat. Isot. 61, 167 (2004)

    Article  Google Scholar 

  71. R. Longland et al., Nucl. Phys. A 841, 1 (2010)

    Article  ADS  Google Scholar 

  72. J. José, M. Hernanz, Astrophys. J. 494, 680 (1998)

    Article  ADS  Google Scholar 

  73. J.C. Blackmon et al., Phys. Rev. Lett. 74, 2642 (1995)

    Article  ADS  Google Scholar 

  74. M.L. Sergi et al., Phys. Rev. C 82, 032801 (2010)

    Article  ADS  Google Scholar 

  75. G.C. Bruno et al., Eur. Phys. J. A 51, 94 (2015)

    Article  ADS  Google Scholar 

  76. C. Rolfs, W. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, 1988)

  77. C. Iliadis, R. Longland, A.E. Champagne, A. Coc, R. Fitzgerald, Nucl. Phys. A 841, 31 (2010)

    Article  ADS  Google Scholar 

  78. J. Görres, C. Rolfs, P. Schmalbrock, H.P. Trautvetter, J. Keinonen, Nucl. Phys. A 385, 57 (1982)

    Article  ADS  Google Scholar 

  79. J. Görres et al., Nucl. Phys. A 408, 372 (1983)

    Article  ADS  Google Scholar 

  80. S.E. Hale et al., Phys. Rev. C 65, 015801 (2001)

    Article  ADS  Google Scholar 

  81. R. Longland et al., Phys. Rev. C 81, 055804 (2010)

    Article  ADS  Google Scholar 

  82. J. Keinonen, M. Riihonen, A. Anttila, Phys. Rev. C 15, 579 (1977)

    Article  ADS  Google Scholar 

  83. J.R. Powers, H.T. Fortune, R. Middleton, O. Hansen, Phys. Rev. C 4, 2030 (1971)

    Article  ADS  Google Scholar 

  84. D. Jenkins et al., Phys. Rev. C 87, 064301 (2013)

    Article  ADS  Google Scholar 

  85. F. Cavanna et al., Phys. Rev. Lett. 115, 252501 (2015)

    Article  ADS  Google Scholar 

  86. C. Casella et al., Nucl. Instrum. Methods A 489, 160 (2002)

    Article  ADS  Google Scholar 

  87. F. Cavanna et al., Eur. Phys. J. A 50, 179 (2014)

    Article  ADS  Google Scholar 

  88. A.E. Champagne, A.J. Howard, M.S. Smith, P.V. Magnus, P.D. Parker, Nucl. Phys. A 505, 384 (1989)

    Article  ADS  Google Scholar 

  89. P.M. Endt, P. de Wit, C. Alderliesten, Nucl. Phys. A 459, 61 (1986)

    Article  ADS  Google Scholar 

  90. P.M. Endt, P. De Wit, C. Alderliesten, Nucl. Phys. A 476, 333 (1988)

    Article  ADS  Google Scholar 

  91. P.M. Endt, C. Rolfs, Nucl. Phys. A 467, 261 (1987)

    Article  ADS  Google Scholar 

  92. C. Iliadis et al., Nucl. Phys. A 512, 509 (1990)

    Article  ADS  Google Scholar 

  93. D.C. Powell et al., Nucl. Phys. A 644, 263 (1998)

    Article  ADS  Google Scholar 

  94. C. Iliadis, L. Buchmann, P.M. Endt, H. Herndl, M. Wiescher, Phys. Rev. C 53, 475 (1996)

    Article  ADS  Google Scholar 

  95. B. Limata et al., Phys. Rev. C 82, 015801 (2010)

    Article  ADS  Google Scholar 

  96. F. Terrasi et al., Nucl. Instrum. Methods B 259, 14 (2007)

    Article  ADS  Google Scholar 

  97. S.E. Hale et al., Phys. Rev. C 70, 045802 (2004)

    Article  ADS  Google Scholar 

  98. J.M. Cesaratto et al., Phys. Rev. C 88, 065806 (2013)

    Article  ADS  Google Scholar 

  99. A. Boeltzig, in preparation

  100. http://www.sanfordlab.org/science/diana

  101. http://www.juna.ac.cn/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Imbriani.

Additional information

Communicated by C. Broggini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boeltzig, A., Bruno, C.G., Cavanna, F. et al. Shell and explosive hydrogen burning. Eur. Phys. J. A 52, 75 (2016). https://doi.org/10.1140/epja/i2016-16075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16075-4

Keywords

Navigation