Skip to main content
Log in

Primordial nucleosynthesis

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Big Bang nucleosynthesis (BBN) describes the production of light nuclei in the early phases of the Universe. For this, precise knowledge of the cosmological parameters, such as the baryon density, as well as the cross section of the fusion reactions involved are needed. In general, the energies of interest for BBN are so low (E < 1MeV) that nuclear cross section measurements are practically unfeasible at the Earth’s surface. As of today, LUNA (Laboratory for Underground Nuclear Astrophysics) has been the only facility in the world available to perform direct measurements of small cross section in a very low background radiation. Owing to the background suppression provided by about 1400 meters of rock at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, and to the high current offered by the LUNA accelerator, it has been possible to investigate cross sections at energies of interest for Big Bang nucleosynthesis using protons, 3He and alpha particles as projectiles. The main reaction studied in the past at LUNA is the 2H(4He,\( \gamma\))6Li . Its cross section was measured directly, for the first time, in the BBN energy range. Other processes like 2H(p,\( \gamma\))3He , 3He(2H, p)4He and 3He(4He,\( \gamma\))7Be were also studied at LUNA, thus enabling to reduce the uncertainty on the overall reaction rate and consequently on the determination of primordial abundances. The improvements on BBN due to the LUNA experimental data will be discussed and a perspective of future measurements will be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Iocco et al., Phys. Rep. 472, 176 (2009)

    Article  Google Scholar 

  2. P.D. Serpico et al., J. Cosmol. Astropart. Phys. 2004, 010 (2004)

    Article  Google Scholar 

  3. P.A.R. Ade, arXiv:1502.01589 (2015)

  4. Y.I. Izotov et al., Astron. Astrophys. 558, A57 (2013)

    Article  ADS  Google Scholar 

  5. R.J. Cooke et al., Astrophys. J. 781, 31 (2014)

    Article  ADS  Google Scholar 

  6. R.H. Cyburt, arXiv:1505.01076v1 (2015)

  7. T. Bania et al., Nature 415, 54 (2002)

    Article  ADS  Google Scholar 

  8. S.G. Ryan et al., Astrophys. J. Lett. 530, L57 (2000)

    Article  ADS  Google Scholar 

  9. M. Anders et al., Phys. Rev. Lett. 113, 042501 (2014)

    Article  ADS  Google Scholar 

  10. M. Asplund et al., Astrophys. J. 644, 229 (2006)

    Article  ADS  Google Scholar 

  11. C. Casella et al., Nucl. Phys. A 706, 203 (2002)

    Article  ADS  Google Scholar 

  12. H. Costantini et al., Phys. Lett. B 482, 43 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Aliotta et al., Nucl. Phys. A 690, 790 (2001)

    Article  ADS  Google Scholar 

  14. D. Bemmerer et al., Phys. Rev. Lett. 97, 122502 (2006)

    Article  ADS  Google Scholar 

  15. Gy. Gyürki et al., Phys. Rev. C 75, 035805 (2007)

    Article  ADS  Google Scholar 

  16. F. Confortola et al., Phys. Rev. C 75, 065803 (2007)

    Article  ADS  Google Scholar 

  17. H. Costantini et al., Nucl. Phys. A 814, 144 (2008)

    Article  ADS  Google Scholar 

  18. E. Di Valentino et al., Phys. Rev. D 90, 023543 (2014)

    Article  ADS  Google Scholar 

  19. K.M. Nollett, G.P. Holder, arXiv:1112.2683v1 (2011)

  20. M. Spite, F. Spite, Nature 297, 483 (1982)

    Article  ADS  Google Scholar 

  21. B.D. Fields, Annu. Rev. Nucl. Part. Sci. 61, 47 (2011)

    Article  ADS  Google Scholar 

  22. K. Jedamzik, M. Pospelov, New J. Phys. 11, 105028 (2009)

    Article  ADS  Google Scholar 

  23. H. Dapo et al., Phys. Rev. C 85, 044602 (2012)

    Article  ADS  Google Scholar 

  24. M. Pospelov, J. Pradler, Annu. Rev. Nucl. Part. Sci. 60, 539 (2010)

    Article  ADS  Google Scholar 

  25. M. Kusakabe et al., Phys. Rev. D 76, 121302 (2007)

    Article  ADS  Google Scholar 

  26. L.M. Krauss, P. Romanelli, Astrophys. J. 358, 47 (1990)

    Article  ADS  Google Scholar 

  27. R.H. Cyburt et al., New Astron. 6, 215 (2001)

    Article  ADS  Google Scholar 

  28. S. Burles et al., Phys. Rev. Lett. 82, 4176 (1999)

    Article  ADS  Google Scholar 

  29. E.G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011)

    Article  ADS  Google Scholar 

  30. R.H. Cyburt, Phys. Rev. D 70, 023505 (2004)

    Article  ADS  Google Scholar 

  31. G.M. Griffiths et al., Can. J. Phys. 40, 402 (1962)

    Article  ADS  Google Scholar 

  32. G.M. Griffiths et al., Can. J. Phys. 41, 724 (1963)

    Article  ADS  Google Scholar 

  33. J.B. Warren et al., Phys. Rev. 132, 1691 (1963)

    Article  ADS  Google Scholar 

  34. G.J. Schmid et al., Phys. Rev. C 56, 2565 (1997)

    Article  ADS  Google Scholar 

  35. L. Ma et al., Phys. Rev. C 55, 588 (1997)

    Article  ADS  Google Scholar 

  36. C. Angulo et al., Nucl. Phys. A 656, 3 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  37. Y. Xu et al., Nucl. Phys. A 918, 61 (2013)

    Article  ADS  Google Scholar 

  38. D.N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175 (2003)

    Article  ADS  Google Scholar 

  39. A. Coc et al., J. Cosmol. Astropart. Phys. 2014, 50 (2014)

    Article  Google Scholar 

  40. E. Vangioni-Flam et al., Astron. Astrophys. 360, 15 (2000)

    ADS  Google Scholar 

  41. D.D. Clayton, Handbook of Isotopes in the Cosmos: Hydrogen to Gallium (Cambridge University Press, Cambridge, 2003)

  42. L. Sbordone et al., Astron. Astrophys. 522, A26 (2010)

    Article  ADS  Google Scholar 

  43. E. Caffau et al., Nature 477, 67 (2011)

    Article  ADS  Google Scholar 

  44. A.J. Korn et al., Nature 442, 657 (2006)

    Article  ADS  Google Scholar 

  45. J.C. Howk et al., Nature 489, 121 (2012)

    Article  ADS  Google Scholar 

  46. A. Coc et al., Phys. Rev. D 87, 123530 (2013)

    Article  ADS  Google Scholar 

  47. E. Adelberger et al., Rev. Mod. Phys. 70, 1265 (1998)

    Article  ADS  Google Scholar 

  48. A. Formicola et al., Eur. Phys. J. A 52, 73 (2016) contribution to this Topical Issue

    Article  Google Scholar 

  49. C. Casella et al., Nucl. Instrum. Methods A 489, 160 (2002)

    Article  ADS  Google Scholar 

  50. J. Görres et al., Nucl. Instrum. Methods A 177, 295 (1980)

    Article  Google Scholar 

  51. M. Marta et al., Nucl. Instrum. Methods A 569, 727 (2006)

    Article  ADS  Google Scholar 

  52. S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)

    Article  ADS  Google Scholar 

  53. C. Arpesella, Appl. Radiat. Isot. 47, 991 (1996)

    Article  Google Scholar 

  54. D. Tilley et al., Nucl. Phys. A 708, 3 (2002)

    Article  ADS  Google Scholar 

  55. B. Nara Singh et al., Phys. Rev. Lett. 93, 262503 (2004)

    Article  ADS  Google Scholar 

  56. T.A.D. Brown et al., Phys. Rev. C 76, 055801 (2007)

    Article  ADS  Google Scholar 

  57. A. di Leva et al., Phys. Rev. Lett. 102, 232502 (2009)

    Article  ADS  Google Scholar 

  58. M. Carmona-Gallardo et al., Phys. Rev. C 86, 032801 (2012)

    Article  ADS  Google Scholar 

  59. C. Bordeanu et al., Nucl. Phys. A 908, 1 (2013)

    Article  ADS  Google Scholar 

  60. A. Kontos et al., Phys. Rev. C 87, 065804 (2013)

    Article  ADS  Google Scholar 

  61. M.P. Takács et al., Phys. Rev. D 91, 123526 (2015)

    Article  ADS  Google Scholar 

  62. T. Neff, Phys. Rev. Lett. 106, 042502 (2011)

    Article  ADS  Google Scholar 

  63. P. Parker, R. Kavanagh, Phys. Rev. 131, 2578 (1963)

    Article  ADS  Google Scholar 

  64. V.V. Smith et al., Astrophys. J. 408, 262 (1993)

    Article  ADS  Google Scholar 

  65. R. Cayrel et al., Astron. Astrophys. 343, 923 (1999)

    ADS  Google Scholar 

  66. M. Asplund, J. Meléndez, AIP Conf. Proc. 990, 342 (2008)

    Article  ADS  Google Scholar 

  67. P. Bonifacio et al., Astron. Astrophys. 462, 851 (2007)

    Article  ADS  Google Scholar 

  68. M. Steffen et al., Mem. Soc. Astron. Ital. 22, 152 (2012)

    Google Scholar 

  69. K. Lind et al., Astron. Astrophys. 554, A96 (2013)

    Article  ADS  Google Scholar 

  70. F. Iocco, M. Pato, Phys. Rev. Lett. 109, 021102 (2012)

    Article  ADS  Google Scholar 

  71. R.G.H. Robertson et al., Phys. Rev. Lett. 47, 1867 (1981)

    Article  ADS  Google Scholar 

  72. P. Mohr et al., Phys. Rev. C 50, 1543 (1994)

    Article  ADS  Google Scholar 

  73. J. Kiener et al., Phys. Rev. C 44, 2195 (1991)

    Article  ADS  Google Scholar 

  74. F.E. Cecil et al., Phys. Rev. C 53, 1967 (1996)

    Article  ADS  Google Scholar 

  75. F. Hammache et al., Phys. Rev. C 82, 065803 (2010)

    Article  ADS  Google Scholar 

  76. M. Anders, $S$-factor measurement of the ^2H(,)^6Li reaction at energies relevant for Big-Bang nucleosynthesis, Report HZDR-042 (2013) and PhD Thesis, Technical University of Dresden (2013)

  77. M. Anders et al., Eur. Phys. J. A 49, 28 (2013)

    Article  ADS  Google Scholar 

  78. D. Trezzi, submitted to Part. Phys

  79. M. Aliotta, Helium burning and neutron sources in stars, contribution to this Topical Issue

  80. G.R. Caughlan, W.A. Fowler, At. Data Nucl. Data Tables 40, 283 (1988)

    Article  ADS  Google Scholar 

  81. N. Prantzos, Astron. Astrophys. 542, A67 (2012)

    Article  ADS  Google Scholar 

  82. V. Tatischeff, J.-P. Thibaud, Astron. Astrophys. 469, 265 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Trezzi.

Additional information

Communicated by C. Broggini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustavino, C., Anders, M., Bemmerer, D. et al. Primordial nucleosynthesis. Eur. Phys. J. A 52, 74 (2016). https://doi.org/10.1140/epja/i2016-16074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16074-5

Keywords

Navigation