Skip to main content
Log in

Quark matter under strong magnetic fields

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We revisit three of the mathematical formalisms used to describe magnetized quark matter in compact objects within the MIT and the Nambu-Jona-Lasinio models and then compare their results. The tree formalisms are based on 1) isotropic equations of state, 2) anisotropic equations of state with different parallel and perpendicular pressures and 3) the assumption of a chaotic field approximation that results in a truly isotropic equation of state. We have seen that the magnetization obtained with both models is very different: while the MIT model produces well-behaved curves that are always positive for large magnetic fields, the NJL model yields a magnetization with lots of spikes and negative values. This fact has strong consequences on the results based on the existence of anisotropic equations of state. We have also seen that, while the isotropic formalism results in maximum stellar masses that increase considerably when the magnetic fields increase, maximum masses obtained with the chaotic field approximation never vary more than 5.5%. The effect of the magnetic field on the radii is opposed in the MIT and NJL models: with both formalisms, isotropic and chaotic field approximation, for a fixed mass, the radii increase with the increase of the magnetic field in the MIT bag model and decrease in the NJL, the radii of quark stars described by the NJL model being smaller than the ones described by the MIT model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.B. Zirker, The Magnetic Universe (The Johns Hopkins University Press, Baltimore, 2009)

  2. R. Duncan, C. Thompson, Astrophys. J. Lett. 392, L9 (1992)

    Article  ADS  Google Scholar 

  3. C. Kouveliotou et al., Nature 393, 235 (1998)

    Article  ADS  Google Scholar 

  4. T. Inagaki, D. Kimura, T. Murata, Prog. Theor. Phys. 111, 371 (2004)

    Article  ADS  MATH  Google Scholar 

  5. S.S. Avancini, D.P. Menezes, M.B. Pinto, C. Providência, Phys. Rev. D 85, 091901(R) (2012)

    Article  ADS  Google Scholar 

  6. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  7. D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 80, 034028 (2009)

    Article  ADS  Google Scholar 

  8. K. Tuchin, Phys. Rev. C 88, 024911 (2013)

    Article  ADS  Google Scholar 

  9. L. McLerran, V. Skokov, Nucl. Phys. A 929, 184 (2014)

    Article  ADS  Google Scholar 

  10. A. Bzdak, V. Skokov, Phys. Lett. B 710, 171 (2012)

    Article  ADS  Google Scholar 

  11. W.-T. Deng, X.-G. Huang, Phys. Rev. C 85, 044907 (2012)

    Article  ADS  Google Scholar 

  12. M.G. de Paoli, D.P. Menezes, Adv. High Energy Phys. 2014, 479401 (2014)

    Article  Google Scholar 

  13. G. Basar, D.E. Kharzeev, V. Skokov, Phys. Rev. Lett. 109, 202303 (2014)

    Article  ADS  Google Scholar 

  14. P. Costa, M. Ferreira, H. Hansen, D.P. Menezes, C. Providência, Phys. Rev. D 89, 056013 (2014)

    Article  ADS  Google Scholar 

  15. M. D’Elia, S. Mukherjee, F. Sanfilippo, Phys. Rev. D 82, 051501 (2010)

    Article  ADS  Google Scholar 

  16. E.-M. Ilgenfritz, M. Kalinowski, M. Müller-Preussker, B. Petersson, A. Schreiber, Phys. Rev. D 85, 114504 (2012)

    Article  ADS  Google Scholar 

  17. G.S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S.D. Katz, S. Krieg, A. Schäfer, K.K. Szabó, JHEP 02, 044 (2012)

    Article  ADS  Google Scholar 

  18. G.S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S.D. Katz, S. Krieg, A. Schäfer, Phys. Rev. D 86, 071502(R) (2012)

    Article  ADS  Google Scholar 

  19. Ana G. Grunfeld, Debora P. Menezes, Marcus B. Pinto, Norberto Scoccola, Phys. Rev. D 90, 044024 (2014)

    Article  ADS  Google Scholar 

  20. M. Ferreira, P. Costa, D.P. Menezes, C. Providência, N. Scoccola, Phys. Rev. D 89, 016002 (2014)

    Article  ADS  Google Scholar 

  21. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Phys. Rev. D 89, 116011 (2014)

    Article  ADS  Google Scholar 

  22. R.L.S. Farias, K.P. Gomes, G. Krein, M.B. Pinto, Phys. Rev. C 90, 025203 (2014)

    Article  ADS  Google Scholar 

  23. K. Fukushima, Y. Hidaka, Phys. Rev. Lett. 110, 031601 (2013)

    Article  ADS  Google Scholar 

  24. T. Kojo, N. Su, Phys. Lett. B 720, 192 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. F. Bruckmann, G. Endrodi, T.G. Kovacs, JHEP 04, 112 (2013)

    Article  ADS  Google Scholar 

  26. D. Bandyopadhyay, S. Chakrabarty, S. Pal, Phys. Rev. Lett. 79, 2176 (1997)

    Article  ADS  Google Scholar 

  27. G.J. Mao, C.J. Mao, A. Iwamoto, Z.X. Li, Chin, J. Astron. Astrophys. 3, 359 (2003)

    ADS  Google Scholar 

  28. A. Rabhi et al., J. Phys. G 36, 115204 (2009)

    Article  ADS  Google Scholar 

  29. S.S. Avancini, D.P. Menezes, M.B. Pinto, C. Providência, Phys. Rev. C 80, 065805 (2009)

    Article  ADS  Google Scholar 

  30. R. Casali, L.B. Castro, D.P. Menezes, Phys. Rev. C 89, 015805 (2014)

    Article  ADS  Google Scholar 

  31. C.Y. Ryu, K.S. Kim, M.Ki Cheoun, Phys. Rev. C 82, 025804 (2010)

    Article  ADS  Google Scholar 

  32. A. Rabhi, P.K. Panda, C. Providência, Phys. Rev. C 84, 035803 (2011)

    Article  ADS  Google Scholar 

  33. R. Mallick, M. Sinha, Mon. Not. R. Astron. Soc. 414, 2702 (2011)

    Article  ADS  Google Scholar 

  34. L.L. Lopes, D.P. Menezes, Braz. J. Phys. 42, 428 (2012)

    Article  ADS  Google Scholar 

  35. V. Dexheimer, R. Negreiros, S. Schramm, Eur. J. Phys. A 48, 189 (2012)

    Article  ADS  Google Scholar 

  36. Debora P. Menezes, Marcus B. Pinto, Luis R.B. de Castro, Constança Providencia, Pedro Costa, Phys. Rev. C 89, 055207 (2014)

    Article  ADS  Google Scholar 

  37. R. Mallick, S. Schramm, Phys. Rev. C 89, 045805 (2014)

    Article  ADS  Google Scholar 

  38. R.O. Gomes, V. Dexheimer, C.A.Z. Vasconcellos, Astron. Nachr. 335, 666 (2014)

    Article  ADS  Google Scholar 

  39. Luiz L. Lopes, Débora Peres Menezes, J. Cosmol. Astropart. Phys. 08, 002 (2015)

    Article  ADS  Google Scholar 

  40. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  MATH  Google Scholar 

  41. N. Itoh, Prog. Theor. Phys. 44, 291 (1970)

    Article  ADS  Google Scholar 

  42. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  43. E. Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  44. V. Dexheimer, J.R. Torres, D.P. Menezes, Eur. Phys. J. C 73, 2569 (2013)

    Article  ADS  Google Scholar 

  45. E.J. Ferrer, V. de la Incera, J.P. Keith, I. Portillo, P.L. Springsteen, Phys. Rev. C 82, 065802 (2010)

    Article  ADS  Google Scholar 

  46. J.L. Noronha, I.A. Shovkovy, Phys. Rev. D 76, 105030 (2007)

    Article  ADS  Google Scholar 

  47. R. Gonzalez Felipe, A. Perez Martinez, H. Perez Rojas, M. Orsaria, Phys. Rev. C 77, 015807 (2008)

    Article  ADS  Google Scholar 

  48. A. Rhabi, C. Providência, J. da Providência, J. Phys. G: Nucl Part. Phys. 35, 125201 (2008)

    Article  ADS  Google Scholar 

  49. A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)

    Article  ADS  Google Scholar 

  50. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorne, V.F. Weisskopf, Phys. Rev. D 9, 3471 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  51. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  52. R.D. Blandford, L. Hernquist, J. Phys. C 15, 6233 (1982)

    Article  ADS  Google Scholar 

  53. S. Chakrabarty, Phys. Rev. D 54, 1306 (1996)

    Article  ADS  Google Scholar 

  54. A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2000)

    Article  ADS  Google Scholar 

  55. A. Rhabi et al., J. Phys. G: Nucl. Part. Phys. 36, 115204 (2009)

    Article  ADS  Google Scholar 

  56. D.P. Menezes, M. Benghi Pinto, S.S. Avancini, A. Pérez Martinez, C. Providência, Phys. Rev. C 79, 035807 (2009)

    Article  ADS  Google Scholar 

  57. X. Huang, M. Huang, D.H. Rischke, A. Sedrakian, Phys. Rev. D 81, 045015 (2010)

    Article  ADS  Google Scholar 

  58. L. Paulucci, E.J. Ferrer, V. de la Incera, J.E. Horvath, Phys. Rev. D 83, 043009 (2011)

    Article  ADS  Google Scholar 

  59. D. Manreza Paret, J.E. Horvath, A. Perez Martinez, Res. Astron. Astrophys. 15, 975 (2015) arXiv:1407.2280 [astro-ph.HE]

    Article  ADS  Google Scholar 

  60. V. Dexheimer, D.P. Menezes, M. Strickland, J. Phys. G 41, 015203 (2014)

    Article  ADS  Google Scholar 

  61. M. Bocquet et al., Astron. Astrophys. 301, 757 (1995)

    ADS  Google Scholar 

  62. C.Y. Cardall, M. Prakash, J.M. Lattimer, Astrophys. J. 554, 322 (2011)

    Article  ADS  Google Scholar 

  63. C.W. Misner, Kip S. Thorne, J.A. Wheeler, Gravitation (Freeman and Company, San Francisco, 1973)

  64. Ya.B. Zel’dovich, I.D. Nivikov, Stars and Relativity (Dover, New York, 1996)

  65. N.K. Glendenning, Compact Stars (Springer-Verlag, New-York, 2000)

  66. J.R. Torres, D.P. Menezes, EPL 101, 42003 (2013)

    Article  ADS  Google Scholar 

  67. K. Hebeler et al., Phys. Lett. 105, 161102 (2010)

    Article  Google Scholar 

  68. A.W. Steiner, S. Gandolfi, Phys. Lett. 108, 081102 (2012)

    Article  Google Scholar 

  69. A.W. Steiner, J.M. Lattimer, E. Brown, Astrophys. J. 722, 33 (2010)

    Article  ADS  Google Scholar 

  70. J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013)

    Article  ADS  Google Scholar 

  71. S. Guillot et al., Astrophys. J. 772, 7 (2013)

    Article  ADS  Google Scholar 

  72. A.W. Steiner, J.M. Lattimer, Astrophys. J. 784, 123 (2014)

    Article  ADS  Google Scholar 

  73. Débora P. Menezes, Marcus B. Pinto, Constança Providência, Phys. Rev. C 91, 065205 (2015)

    Article  ADS  Google Scholar 

  74. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994)

    Article  ADS  Google Scholar 

  75. Peng-Cheng Chu, Xin Wang, Lie-Wen Chen, Mei Huang, Phys. Rev. D 91, 023003 (2015)

    Article  ADS  Google Scholar 

  76. D. Chatterjee et al., Mon. Not. R. Astron. Soc. 447, 3785 (2015) arXiv:1410.6332v1 [astro-ph.HE]

    Article  ADS  Google Scholar 

  77. S.S. Avancini, D.P. Menezes, C. Providência, Phys. Rev. C 83, 065805 (2011)

    Article  ADS  Google Scholar 

  78. C.J. Horowitz, J. Piekarewicz, Phys. Rev. C 64, 062802 (2001)

    Article  ADS  Google Scholar 

  79. J. Carriere, C.J. Horowitz, J. Piekarewicz, Astrophys. J. 593, 463 (2003)

    Article  ADS  Google Scholar 

  80. R. Cavagnoli, D.P. Menezes, C. Providência, Phys. Rev. C 84, 065810 (2011)

    Article  ADS  Google Scholar 

  81. S. Gandolfi, J. Carlson, S. Reddy, Phys. Rev. C 85, 032801(R) (2012)

    Article  ADS  Google Scholar 

  82. C. Providência, Eur. Phys. J. A 50, 44 (2014)

    Article  ADS  Google Scholar 

  83. L.L. Lopes, D.P. Menezes, Braz. J. Phys. 44, 774 (2014)

    Article  ADS  Google Scholar 

  84. Lei Chang, Yu-Xin Liu, Craig D. Roberts, Phys. Rev. Lett. 106, 072001 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Laércio Lopes.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peres Menezes, D., Laércio Lopes, L. Quark matter under strong magnetic fields. Eur. Phys. J. A 52, 17 (2016). https://doi.org/10.1140/epja/i2016-16017-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16017-2

Keywords

Navigation