Skip to main content
Log in

Dispersive approaches for three-particle final state interaction

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, we present different representations of the Khuri-Treiman equation and discuss advantages and disadvantages of each representation. In particular we focus on the inversion technique proposed by Pasquier, which, even though developed a long time ago, has not been used in modern analyses of data on three particle decays. We apply the method to a toy model and compare the sensitivity of this and alternative solution methods to the left-hand cut contribution. We also discuss the meaning and applicability of Watson’s theorem when three particles in final states are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.N. Khuri, S.B. Treiman, Phys. Rev. 119, 1115 (1960).

    Article  ADS  Google Scholar 

  2. J.B. Bronzan, C. Kacser, Phys. Rev. 132, 2703 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  3. I.J.R. Aitchison, Nuovo Cimento 35, 434 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  4. I.J.R. Aitchison, Phys. Rev. B 137, 1070 (1965).

    Article  ADS  Google Scholar 

  5. I.J.R. Aitchison, Phys. Rev. 154, 1622 (1967).

    Article  ADS  Google Scholar 

  6. I.J.R. Aitchison, R. Pasquier, Phys. Rev. 152, 1274 (1966).

    Article  ADS  Google Scholar 

  7. R. Pasquier, J.Y. Pasquier, Phys. Rev. 170, 1294 (1968).

    Article  ADS  Google Scholar 

  8. R. Pasquier, J.Y. Pasquier, Phys. Rev. 177, 2482 (1969).

    Article  ADS  Google Scholar 

  9. J. Kambor, C. Wiesendanger, D. Wyler, Nucl. Phys. B 465, 215 (1996).

    Article  ADS  Google Scholar 

  10. A.V. Anisovich, H. Leutwyler, Phys. Lett. B 375, 335 (1996).

    Article  ADS  Google Scholar 

  11. S. Lanz, PoS CD 12, 007 (2013) arXiv:1301.7282 [hep-ph].

    Google Scholar 

  12. K. Kampf, M. Knecht, J. Novotny, M. Zdrahal, Phys. Rev. D 84, 114015 (2011).

    Article  ADS  Google Scholar 

  13. S. Descotes-Genon, B. Moussallam, Eur. Phys. J. C 74, 2946 (2014).

    Article  ADS  Google Scholar 

  14. J. Bijnens, J. Gasser, Phys. Scr. T99, 34 (2002).

    Article  ADS  Google Scholar 

  15. I.V. Danilkin, C. Fernández-Ramírez, P. Guo, V. Mathieu, D. Schott, M. Shi, A.P. Szczepaniak, Phys. Rev. D 91, 094029 (2015).

    Article  ADS  Google Scholar 

  16. S.P. Schneider, B. Kubis, C. Ditsche, JHEP 02, 028 (2011).

    ADS  Google Scholar 

  17. P. Guo, I.V. Danilkin, D. Schott, C. Fernández-Ramírez, V. Mathieu, A.P. Szczepaniak, Phys. Rev. D 92, 054016 (2015).

    Article  ADS  Google Scholar 

  18. N.I. Muskhelishvili, Tr. Tbilis. Math Instrum. 10, 1 (1958) in Singular Integral Equations.

    Google Scholar 

  19. R. Omnès, Nuovo Cimento 8, 316 (1958).

    Article  MATH  Google Scholar 

  20. G.F. Chew, S. Mandelstam, Phys. Rev. 119, 467 (1960).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. G. Frye, R.L. Warnock, Phys. Rev. 130, 478 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Mandelstam, Phys. Rev. Lett. 4, 84 (1960).

    Article  MATH  ADS  Google Scholar 

  23. W.R. Frazer, J.R. Fulco, Phys. Rev. Lett. 2, 365 (1959).

    Article  ADS  Google Scholar 

  24. I. Caprini, G. Colangelo, H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006).

    Article  ADS  Google Scholar 

  25. R. Garcia-Martin, R. Kaminski, J.R. Pelaez, J. Ruiz de Elvira, Phys. Rev. Lett. 107, 072001 (2011).

    Article  ADS  Google Scholar 

  26. F.J. Yndurain, hep-ph/0212282.

  27. A. Gasparyan, M.F.M. Lutz, Nucl. Phys. A 848, 126 (2010).

    Article  ADS  Google Scholar 

  28. I.V. Danilkin, L.I.R. Gil, M.F.M. Lutz, Phys. Lett. B 703, 504 (2011).

    Article  ADS  Google Scholar 

  29. I.J.R. Aitchison, J.J. Brehm, Phys. Rev. D 17, 3072 (1978).

    Article  ADS  Google Scholar 

  30. K.M. Watson, Phys. Rev. 88, 1163 (1952).

    Article  MATH  ADS  Google Scholar 

  31. I.J.R. Aitchison, Nuovo Cimento 35, 434 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  32. I.J.R. Aitchison, Nuovo Cimento A 51, 249 (1967).

    Article  ADS  Google Scholar 

  33. R.D. Amado, Phys. Rev. 158, 1414 (1967).

    Article  ADS  Google Scholar 

  34. I.J.R. Aitchison, C. Kacser, Phys. Rev. 173, 1700 (1968).

    Article  ADS  Google Scholar 

  35. R.C. Brower, C.E. DeTar, J.H. Weis, Phys. Rep. 14, 257 (1974).

    Article  ADS  Google Scholar 

  36. R. Blankenbecler, Phys. Rev. 122, 983 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. L.F. Cook Jr., B.W. Lee, Phys. Rev. 127, 283 (1962).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  38. S.P. Schneider, B. Kubis, F. Niecknig, Phys. Rev. D 86, 054013 (2012).

    Article  ADS  Google Scholar 

  39. B. Ananthanarayan, I. Caprini, B. Kubis, Eur. Phys. J. C 74, 3209 (2014).

    Article  Google Scholar 

  40. I. Caprini, Phys. Rev. D 92, 014014 (2015).

    Article  ADS  Google Scholar 

  41. E791 Collaboration (E.M. Aitala et al.), Phys. Rev. D 73, 032004 (2006) 74.

    Article  Google Scholar 

  42. CLEO-c Collaboration (G. Bonvicini et al.), Phys. Rev. D 78, 052001 (2008).

    Article  Google Scholar 

  43. I. Caprini, Phys. Lett. B 638, 468 (2006).

    Article  ADS  Google Scholar 

  44. The FOCUS Collaboration (J.M. Link et al.), M.R. Pennington, Phys. Lett. B 653, 1 (2007).

    Article  ADS  Google Scholar 

  45. P.C. Magalhães et al., Phys. Rev. D 84, 094001 (2011).

    Article  ADS  Google Scholar 

  46. F. Haas on behalf of the COMPASS Collaboration, AIP. Conf. Proc. 1374, 273 (2011).

    Article  ADS  Google Scholar 

  47. S. Uhl on behalf of the COMPASS Collaboration, arXiv:1401.4943 [hep-ex].

  48. P.V. Landshoff, S.B. Treiman, Phys. Rev. 127, 649 (1962).

    Article  ADS  Google Scholar 

  49. R.J. Eden, P.V. Landshoff, D.I. Olive, J.C. Polkinghorne, The Analytic S-Matrix (Cambridge University Press, Cambridge, England, 1966).

  50. J.-J. Wu, X.-H. Liu, Q. Zhao, B.-S. Zou, Phys. Rev. Lett. 108, 081803 (2012).

    Article  ADS  Google Scholar 

  51. Q. Wang, C. Hanhart, Q. Zhao, Phys. Lett. B 725, 106 (2013).

    Article  ADS  Google Scholar 

  52. Q. Wang, C. Hanhart, Q. Zhao, Phys. Rev. Lett. 111, 132003 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Guo.

Additional information

Communicated by R. Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Danilkin, I.V. & Szczepaniak, A.P. Dispersive approaches for three-particle final state interaction. Eur. Phys. J. A 51, 135 (2015). https://doi.org/10.1140/epja/i2015-15135-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15135-7

Keywords

Navigation