Skip to main content
Log in

Analytic view at alpha clustering in even-even heavy nuclei near magic numbers 82 and 126

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Most studies on the determination of the alpha-decay preformation factor have used decay formulae. The preformation factor is known to contain abundant information on the nuclear structure. The successful determination of the preformation factor through the cluster formation model (CFM) motivates this study to determine the factor for nuclei near the magic numbers and present results in an analytic study based on different comparisons and observations. The difference between preformation factors obtained from CFM and from the decay formula method is significant. The formula method is used for the entire process of alpha decay as a transition between two states, whereas CFM is applied for the initial state of alpha formation. The preformation factor obtained using CFM and clusterization state representation was first compared with that obtained from the decay formula. Results were used to investigate alpha formation in even-even heavy nuclei, including 72 < Z < 92 and 92 < N < 142, near the magic numbers Z = 82 and N = 126. The values of the preformation factor were discussed and explained in detail according to the clusterization state representation to describe the most possible states of ground-state nuclei. The alpha clustering described through CFM is found to be consistent with that described using the decay formula for the open-shell nuclei of N < 126. The presence of more nucleons in the open-shell nuclei results in lower probability for alpha clustering and lower value of the preformation factor. However, few nucleons beyond the closed shell can cause higher probability for alpha clustering and larger value of the preformation factor. The maximum and minimum of the alpha-cluster formation occur in the nucleus of the double-shell closure (with N = 126 and Z = 82 and in the nucleus of two protons and two neutrons more. This formation probability is sensitive to the subshells, leading to the possibility of more clusterization states, including core-cluster, core-cluster1-cluster2, and core-alpha-alpha structures. The cluster states deduced from the formation probability can be used in future studies to extend the Ikeda diagram to the heavy nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Varga, R.G. Lovas, R.J. Liotta, Phys. Rev. Lett. 69, 37 (1992) DOI:10.1103/PhysRevLett.69.37

    Article  ADS  Google Scholar 

  2. G. Dodig-Crnković, F.A. Janouch, R.J. Liotta, L.J. Sibanda, Nucl. Phys. A 444, 419 (1985) DOI:10.1016/0375-9474(85)90460-9

    Article  ADS  Google Scholar 

  3. I. Tonozuka, A. Arima, Nucl. Phys. A 323, 45 (1979) DOI:10.1016/0375-9474(79)90415-9

    Article  ADS  Google Scholar 

  4. G. Dodig-Crnkovic, F.A. Janouch, R.J. Liotta, Nucl. Phys. A 501, 533 (1989) DOI:10.1016/0375-9474(89)90146-2

    Article  ADS  Google Scholar 

  5. K. Varga, R.G. Lovas, R.J. Liotta, Nucl. Phys. A 550, 421 (1992) DOI:10.1016/0375-9474(92)90017-E

    Article  ADS  Google Scholar 

  6. W.G. Davies, R.M. Devries, G.C. Ball, J.S. Forster, W. McLatchie, D. Shapira et al., Nucl. Phys. A 269, 477 (1976) DOI:10.1016/0375-9474(76)90694-1

    Article  ADS  Google Scholar 

  7. D. Ni, Z. Ren, Nucl. Phys. A 828, 348 (2009) DOI:10.1016/j.nuclphysa.2009.07.014

    Article  ADS  Google Scholar 

  8. D. Ni, Z. Ren, Nucl. Phys. A 834, 370c (2010) DOI:10.1016/j.nuclphysa.2010.01.042

    Article  ADS  Google Scholar 

  9. P.E. Hodgson, E. Bä, E. Betak, Phys. Rep. 374, 1 (2003)

    Article  ADS  Google Scholar 

  10. B. Buck, A.C. Merchant, S.M. Perez, P. Tripe, J. Phys. G Nucl. Part. Phys. 20, 351 (1994) http://stacks.iop.org/0954-3899/20/i=2/a=013

    Article  ADS  Google Scholar 

  11. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. Lett. 72, 1326 (1994) http://link.aps.org/doi/10.1103/PhysRevLett.72.1326

    Article  ADS  Google Scholar 

  12. P. Mohr, Phys. Rev. C 61, 45802 (2000) http://link.aps.org/doi/10.1103/PhysRevC.61.045802

    Article  ADS  Google Scholar 

  13. C. Xu, Z. Ren, Nucl. Phys. A 760, 303 (2005) DOI:10.1016/j.nuclphysa.2005.06.011

    Article  ADS  Google Scholar 

  14. B. Buck, A.C. Merchant, S.M. Perez, J. Phys. G Nucl. Part. Phys. 18, 143 (1992) http://stacks.iop.org/0954-3899/18/i=1/a=012

    Article  ADS  Google Scholar 

  15. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. C 45, 2247 (1992) http://link.aps.org/doi/10.1103/PhysRevC.45.2247

    Article  ADS  Google Scholar 

  16. B. Buck, A.C. Merchant, S.M. Perez, Eur. J. Phys. 14, 59 (1993) http://stacks.iop.org/0143-0807/14/i=2/a=003

    Article  Google Scholar 

  17. B. Buck, A.C. Merchant, S.M. Perez, At. Data Nucl. Data Tables 54, 53 (1993) http://www.sciencedirect.com/science/article/pii/S0092640X83710090

    Article  ADS  Google Scholar 

  18. F. Hoyler, P. Mohr, G. Staudt, Phys. Rev. C 50, 2631 (1994) http://link.aps.org/doi/10.1103/PhysRevC.50.2631

    Article  ADS  Google Scholar 

  19. J. Dong, H. Zhang, Y. Wang, W. Zuo, J. Li, Nucl. Phys. A 832, 198 (2010) DOI:10.1016/j.nuclphysa.2009.10.082

    Article  ADS  Google Scholar 

  20. G.L.L. Zhang, X.Y.Y. Le, H.Q.Q. Zhang, Nucl. Phys. A 823, 16 (2009) DOI:10.1016/j.nuclphysa.2009.03.005

    Article  ADS  Google Scholar 

  21. R.G. Lovas, R.J. Liotta, A. Insolia, K. Varga, D.S. Delion, Phys. Rep. 294, 265 (1998) DOI:10.1016/S0370-1573(97)00049-5

    Article  ADS  Google Scholar 

  22. Y. Qian, Z. Ren, Nucl. Phys. A 852, 82 (2011) DOI:10.1016/j.nuclphysa.2011.01.007

    Article  ADS  Google Scholar 

  23. J. Dong, W. Zuo, W. Scheid, Nucl. Phys. A 861, 1 (2011) DOI:10.1016/j.nuclphysa.2011.06.016

    Article  ADS  Google Scholar 

  24. Ren Zhong-zhou, Xu Gong-ou, Phys. Rev. C 38, 1078 (1988) http://link.aps.org/doi/10.1103/PhysRevC.38.1078

    Article  ADS  Google Scholar 

  25. Ren Zhong-zhou, Xu Gong-ou, Phys. Rev. C 36, 456 (1987) http://link.aps.org/doi/10.1103/PhysRevC.36.456

    Article  ADS  Google Scholar 

  26. C. Xu, Z. Ren, Phys. Rev. C 76, 1 (2007) DOI:10.1103/PhysRevC.76.027303

    MATH  Google Scholar 

  27. H. Zhang, G. Royer, Y. Wang, Phys. Rev. C 80, 057301 (2009) http://hal.archives-ouvertes.fr/docs/00/42/97/00/PDF/preformation445-v2161009.pdf

    Article  ADS  Google Scholar 

  28. S.M. Saleh Ahmed, R. Yahaya, S. Radiman, M. Samudi Yasir, J. Phys. G Nucl. Part. Phys. 40, 065105 (2013) DOI:10.1088/0954-3899/40/6/065105

    Article  ADS  Google Scholar 

  29. S.M.S. Ahmed, R. Yahaya, S. Radiman, Rom. Rep. Phys. 65, 1281 (2013)

    Google Scholar 

  30. B. Buck, A.C. Merchant, S.M. Perez, J. Phys. G Nucl. Part. Phys. 17, 1223 (1991) http://stacks.iop.org/0954-3899/17/i=8/a=012

    Article  ADS  Google Scholar 

  31. D. Ni, Z. Ren, Phys. Rev. C 80, 1 (2009) DOI:10.1103/PhysRevC.80.014314

    Google Scholar 

  32. H.F. Zhang, G. Royer, Phys. Rev. C 77, 1 (2008) DOI:10.1103/PhysRevC.77.054318

    Google Scholar 

  33. H.F. Zhang, G. Royer, J. Li, Phys. Rev. C 84, 2 (2011) DOI:10.1103/PhysRevC.84.027303

    Google Scholar 

  34. B. Buck, A.C. Merchant, S.M. Perez, Phys. Rev. Lett. 65, 2975 (1990) DOI:10.1103/PhysRevLett.65.2975

    Article  ADS  Google Scholar 

  35. D.S. Delion, Int. J. Mod. Phys. E 17, 2283 (2008)

    Article  ADS  Google Scholar 

  36. W. Seif, M. Shalaby, M. Alrakshy, Phys. Rev. C 84, 1 (2011) DOI:10.1103/PhysRevC.84.064608

    Article  Google Scholar 

  37. G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003) DOI:10.1016/j.nuclphysa.2003.11.001

    Article  ADS  Google Scholar 

  38. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003) DOI:10.1016/j.nuclphysa.2003.11.003

    Article  ADS  Google Scholar 

  39. Y. Qian, Z. Ren, D. Ni, Nucl. Phys. A 866, 1 (2011) DOI:10.1016/j.nuclphysa.2011.07.002

    Article  ADS  Google Scholar 

  40. H. Horiuchi, K. Ikeda, K. Katō, Prog. Theor. Phys. Suppl. 192, 1 (2012) DOI:10.1143/PTPS.192.1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad M. Saleh Ahmed.

Additional information

Communicated by F. Nunes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S.M.S., Yahaya, R., Radiman, S. et al. Analytic view at alpha clustering in even-even heavy nuclei near magic numbers 82 and 126. Eur. Phys. J. A 51, 13 (2015). https://doi.org/10.1140/epja/i2015-15013-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15013-4

Keywords

Navigation