Skip to main content
Log in

Effect of temperature on the effective mass and the neutron skin of nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We study the finite temperature Hartree-Fock-BCS approximation for selected stable Sn nuclei with zero-range Skyrme forces. Hartree Fock BCS approximation allows for a straightforward interpretation of the results since it involves u and v 's which are not matrices as in HFB. Pairing transitions from superfluid to the normal state are studied with respect to the temperature. The temperature dependence of the nuclear radii and neutron skin are also analyzed. An increase of proton and neutron radii is obtained in neutron-rich nuclei, especially above the critical temperature. Using different Skyrme energy functionals, it is found that the correlation between the effective mass in symmetric nuclear matter and the critical temperature depends on the pairing prescription. The temperature dependence of the nucleon effective mass is also investigated, showing that proton and neutron effective masses display different behavior below and above the critical temperature, due to the small temperature dependence of the density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sano, S. Yamasaki, Prog. Theor. Phys. 29, 397 (1963).

    Article  ADS  Google Scholar 

  2. A.L. Goodman, Nucl. Phys. A 352, 30 (1981).

    Article  ADS  Google Scholar 

  3. D. Gambacurta, D. Lacroix, N. Sandulescu, Phys. Rev. C 88, 034324 (2013).

    Article  ADS  Google Scholar 

  4. A.F. Fantina, J. Margueron, P. Donati, P.M. Pizzochero, J. Phys. G: Nucl. Part. Phys. 38, 025101 (2011).

    Article  ADS  Google Scholar 

  5. A.L. Goodman, Phys. Rev. C 34, 1942 (1986).

    Article  ADS  Google Scholar 

  6. J.L. Egido, P. Ring, J. Phys. G: Nucl. Part. Phys. 19, 1 (1993).

    Article  ADS  Google Scholar 

  7. V. Martin, J.L. Egido, L.M. Robledo, Phys. Rev. C 68, 034327 (2003).

    Article  ADS  Google Scholar 

  8. E. Khan, N. Van Giai, M. Grasso, Nucl. Phys. A 731, 311 (2004).

    Article  ADS  Google Scholar 

  9. J. Margueron, E. Khan, Phys. Rev. C 86, 065801 (2012).

    Article  ADS  Google Scholar 

  10. E. Khan, N. Van Giai, N. Sandulescu, Nucl. Phys. A 789, 94 (2007).

    Article  ADS  Google Scholar 

  11. Y.F. Niu, Z.M. Niu, N. Paar, D. Vretenar, G.H. Wang, J.S. Bai, J. Meng, Phys. Rev. C 88, 034308 (2013).

    Article  ADS  Google Scholar 

  12. A. Schiller, A. Bjerve, M. Guttormsen, M. Hjorth-Jensen, F. Ingebretsen, E. Melby, S. Messelt, J. Rekstad, S. Siem, S.W. Odegard, Phys. Rev. C 63, 021306 (2001).

    Article  ADS  Google Scholar 

  13. E. Melby, M. Guttormsen, J. Rekstad, A. Schiller, S. Siem, A. Voinov, Phys. Rev. C 63, 044309 (2001).

    Article  ADS  Google Scholar 

  14. N. Sandulescu, Phys. Rev. C 70, 025801 (2004).

    Article  ADS  Google Scholar 

  15. C. Monrozeau, J. Margueron, N. Sandulescu, Phys. Rev. C 75, 065807 (2007).

    Article  ADS  Google Scholar 

  16. A.F. Fantina, PhD thesis, Université Paris Sud and Università degli Studi di Milano (2010).

  17. P. Donati, P.M. Pizzochero, P.F. Bortignon, R.A. Broglia, Phys. Rev. Lett. 72, 2835 (1994).

    Article  ADS  Google Scholar 

  18. C. Mahaux, P.F. Bortignon, R.A. Broglia, C.H. Dasso, Phys. Rep. 120, 1 (1985).

    Article  ADS  Google Scholar 

  19. A.F. Fantina, P. Donati, P.M. Pizzochero, Phys. Lett. B 676, 140 (2009).

    Article  ADS  Google Scholar 

  20. D.J. Dean, K. Langanke, J.M. Sampaio, Phys. Rev. C 66, 045802 (2002).

    Article  ADS  Google Scholar 

  21. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Heidelberg, 1980).

  22. G.F. Bertsch, H. Esbensen, Ann. Phys. (NY) 209, 327 (1991).

    Article  ADS  Google Scholar 

  23. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984).

    Article  ADS  Google Scholar 

  24. M. Matsuo, Nucl. Phys. A 696, 371 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  25. P. Bonche, S. Levit, V. Vautherin, Nucl. Phys. A 428, 95 (1984).

    Article  ADS  Google Scholar 

  26. J.L. Egido, L.M. Robledo, V. Martin, Phys. Rev. Lett. 85, 26 (2000).

    Article  ADS  Google Scholar 

  27. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  28. N. Van Giai, H. Sagawa, Phys. Lett. B 106, 379 (1981).

    Article  ADS  Google Scholar 

  29. M. Beiner, H. Flocard, N. Van Giai, P. Quentin, Nucl. Phys. A 238, 29 (1975).

    Article  ADS  Google Scholar 

  30. J. Bartel, P. Quentin, M. Brack, C. Guet, H.-B. Hakansson, Nucl. Phys. A 386, 79 (1982).

    Article  ADS  Google Scholar 

  31. J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Dechargé, Phys. Rev. C 53, 2809 (1996).

    Article  ADS  Google Scholar 

  32. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  33. R.W. Hasse, P. Schuck, Phys. Lett. B. 179, 313 (1986).

    Article  ADS  Google Scholar 

  34. P.F. Bortignon, C.H. Dasso, Phys. Lett. B 189, 381 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yüksel.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüksel, E., Khan, E., Bozkurt, K. et al. Effect of temperature on the effective mass and the neutron skin of nuclei. Eur. Phys. J. A 50, 160 (2014). https://doi.org/10.1140/epja/i2014-14160-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14160-4

Keywords

Navigation