Skip to main content
Log in

Imposing Fermi momentum cut-off on the channel- and density-dependent effective interaction and the ground-state properties of closed shell nuclei

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The ground-state properties of light-moderate symmetric closed shell nuclei, i.e. 4He, 12C, 16O, 28Si, and 40Ca, and moderate-heavy asymmetric ones, i.e. 48Ca, 90Zr, and 120Sn, are calculated using the channel- and density-dependent effective interaction with the imposed Fermi momentum cut-off (CDDEI+FMC). CDDEI+FMC are generated through the lowest-order constrained variational (LOCV) nuclear matter calculations with the \( Av_{18}(j_{max}=2)\) nucleon-nucleon bare potential. FMC is considered by defining the maximum value of the relative quantum numbers according to the last shell in the ground state of a nucleus. The Hamiltonian matrix of the truncated effective interactions is diagonalized in the harmonic oscillator basis, regarding the nucleon configurations. The FMC effect on the different interaction channels is considered by comparing the contributions of each channel in the binding energies of the sample nuclei. CDDEI+FMC are replaced by the density-dependent average effective interactions with the imposed FMC (DDAEI+FMC) for the channels with \( j > j_{max}\). For the light nuclei, the results show that the nuclei are more binding relative to the CDDEI-FMC case. The 4He nucleus is about 1.4MeV more binding per nucleon, and the root mean square of its radius equals the experimental data exactly. For the moderate-heavy closed shell nuclei, there are no significant differences between the results of the two cases, both with FMC and without it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Bethe, Annu. Rev. Nucl. Part. Sci. 21, 93 (1971)

    Article  ADS  Google Scholar 

  2. R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  3. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994)

    Article  ADS  Google Scholar 

  4. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  5. V. Stoks, J.J. de Swart, Phys. Rev. C 51, 1698 (1995)

    Article  ADS  Google Scholar 

  6. L. Frankfurt, M. Sargsian, M. Strikman, Int. J. Mod. Phys. A 23, 2991 (2008)

    Article  ADS  MATH  Google Scholar 

  7. J.G. Zabolitsky, W. Ey, Phys. Lett. B 76, 527 (1978)

    Article  ADS  Google Scholar 

  8. V.R. Pandharipande, I. Sick, P.K.A. Huberts, Rev. Mod. Phys. 69, 981 (1997)

    Article  ADS  Google Scholar 

  9. K.A. Brueckner, C.A. Levinson, H.M. Mahmoud, Phys. Rev. 95, 217 (1954)

    Article  ADS  MATH  Google Scholar 

  10. K.A. Brueckner, C.A. Levinson, Phys. Rev. 97, 1344 (1955)

    Article  ADS  MATH  Google Scholar 

  11. J.W. Negle, Phys. Rev. C 1, 1260 (1970)

    Article  ADS  Google Scholar 

  12. J.C. Owen, R.F. Bishop, J.M. Irvine, Ann. Phys. (NY) 102, 170 (1976)

    Article  ADS  Google Scholar 

  13. M. Modarres, J.M. Irvine, J. Phys. G 5, 511 (1979)

    Article  ADS  Google Scholar 

  14. M. Modarres, G.H. Borbar, Phys. Rev. C 58, 2781 (1998)

    Article  ADS  Google Scholar 

  15. M. Modares, J.M. Irvine, J. Phys. G 5, L7 (1979)

    Article  ADS  Google Scholar 

  16. R.V. Reid, Ann. Phys. 50, 411 (1969)

    Article  ADS  Google Scholar 

  17. B.D. Day, Phys. Rev. C 24, 1203 (1981)

    Article  ADS  Google Scholar 

  18. A.M. Green, J.A. Niskanan, M.E. Sainio, J. Phys. G 4, 1055 (1978)

    Article  ADS  Google Scholar 

  19. M. Modarres, N. Rasekhinejad, Phys. Rev. C 72, 014301 (2005)

    Article  ADS  Google Scholar 

  20. M. Modarres, N. Rasekhinejad, Phys. Rev. C 72, 064306 (2005)

    Article  ADS  Google Scholar 

  21. M. Modarres, N. Rasekhinejad, H. Mariji, Int. J. Mod. Phys. E 20, 679 (2011)

    Article  ADS  Google Scholar 

  22. M. Modarres, H. Mariji, N. Rasekhinejad, Nucl. Phys. A 859, 16 (2011)

    Article  ADS  Google Scholar 

  23. M. Modarres, H. Mariji, Phys. Rev. C 86, 054324 (2012)

    Article  ADS  Google Scholar 

  24. M. Modarres, J. Phys. G: Nucl. Phys. 10, 251 (1984)

    Article  ADS  Google Scholar 

  25. M. Modarres, H.R. Moshfegh, H. Mariji, Can. J. Phys. 80, 911 (2002)

    Article  ADS  Google Scholar 

  26. A. Stadler, W. Glöckle, P.U. Sauer, Phys. Rev. C 44, 2319 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  27. C.R. Chen, G.L. Payne, J.L. Friar, B.F. Gibson, Phys. Rev. C 33, 1740 (1986)

    Article  ADS  Google Scholar 

  28. J. Carlson, Phys. Rev. C 38, 1879 (1988)

    Article  ADS  Google Scholar 

  29. S.C. Pieper, R.B. Wiringa, V.R. Pandharipande, Phys. Rev. C 46, 1741 (1992)

    Article  ADS  Google Scholar 

  30. B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Piper, R.B. Wiringa, Phys. Rev. C 56, 120 (1997)

    Article  Google Scholar 

  31. A. Kievsky, M. Viviani, S. Rosati, Nucl. Phys. A 551, 241 (1993)

    Article  ADS  Google Scholar 

  32. S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64, 014001 (2001)

    Article  ADS  Google Scholar 

  33. S.C. Pieper, R.B. Wiringa, J. Carlson, Phys. Rev. C 70, 054325 (2004)

    Article  ADS  Google Scholar 

  34. S.C. Pieper, K. Varga, R.B. Wiringa, Phys. Rev. C 66, 044310 (2002)

    Article  ADS  Google Scholar 

  35. S.C. Pieper, R.B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51, 53 (2001)

    Article  ADS  Google Scholar 

  36. S.C. Pieper, Nucl. Phys. A 751, 516 (2005)

    Article  ADS  Google Scholar 

  37. P. Navrátil, J.P. Vary, B.R. Barret, Phys. Rev. Lett. 84, 5731 (2000)

    Article  ADS  Google Scholar 

  38. P. Navrátil, J.P. Vary, B.R. Barret, Phys. Rev. C 62, 054311 (2000)

    Article  ADS  Google Scholar 

  39. P. Navrátil, W.E. Ormand, Phys. Rev. C 68, 034305 (2003)

    Article  ADS  Google Scholar 

  40. G. Hagen, D.J. Dean, M. Hjorth-Jensen, T. Papenbrock, A. Schwenk, Phys. Rev. C 76, 044305 (2007)

    Article  ADS  Google Scholar 

  41. A. Fabrocini, F. Arias de Saavedra, G. Có, P. Folgarait, Phys. Rev. C 57, 1668 (1998)

    Article  ADS  Google Scholar 

  42. G. Có, A. Fabrocini, S. Fantoni, I. Lagaris, Nucl. Phys. A 549, 439 (1992)

    Article  ADS  Google Scholar 

  43. A. Fabrocini, F. Arias de Saavedra, G. Có, P. Folgarait, Phys. Rev. C 61, 044302 (2000)

    Article  ADS  Google Scholar 

  44. F. Arias de Saavedra, G. Có, A. Fabrocini, S. Fantoni, Nucl. Phys. A 605, 359 (1996)

    Article  ADS  Google Scholar 

  45. G. Có, A. Fabrocini, S. Fantoni, Nucl. Phys. A 568, 73 (1994)

    Article  ADS  Google Scholar 

  46. F. Arias de Saavedra, G. Có, A. Fabrocini, Phys. Rev. C 63, 064308 (2001)

    Article  ADS  Google Scholar 

  47. R. Roth, T. Neff, H. Hargert, H. Feldmeier, Nucl. Phys. A 745, 3 (2004)

    Article  ADS  Google Scholar 

  48. S. Fujii, R. Okamoto, K. Suzuki, Phys. Rev. Lett. 103, 182501 (2009)

    Article  ADS  Google Scholar 

  49. L. Coraggio, N. Itaco, A. Covello, A. Gargano, T.T.S. Kuo, Phys. Rev. C 68, 034320 (2003)

    Article  ADS  Google Scholar 

  50. L. Coraggio, A. Covello, A. Gargano, N. Itaco, T.T.S. Kuo, R. Machleidt, Phys. Rev. C 71, 014307 (2005)

    Article  ADS  Google Scholar 

  51. L. Coraggio, A. Covello, A. Gargano, N. Itaco, T.T.S. Kuo, Phys. Rev. C 73, 014304 (2006)

    Article  ADS  Google Scholar 

  52. H. Mariji, M. Modarres, to be published in Phys. Part. Nucl

  53. Samuel S.M. Wong, Introductory Nuclear Physics, second edition (Wiley-VCH Verlag GmbH & Co. KGaA, 2004)

  54. T. Brody, M. Moshinsky, Tables of Transformation Brackets (Mexico Instituto de Fisica, Mexico City, 1960)

  55. H. de Vries, C.W. de Jager, C. de Vries, At. Data Nucl. Data Tables 36, 496 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mariji.

Additional information

Communicated by M. Hjorth-Jensen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mariji, H. Imposing Fermi momentum cut-off on the channel- and density-dependent effective interaction and the ground-state properties of closed shell nuclei. Eur. Phys. J. A 50, 56 (2014). https://doi.org/10.1140/epja/i2014-14056-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14056-3

Keywords

Navigation