Skip to main content
Log in

Mass yield distributions of fission products from photo-fission of 238U induced by 11.5–17.3 MeV bremsstrahlung

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The yields of various fission products in the 11.5, 13.4, 15.0 and 17.3 MeV bremsstrahlung-induced fission of 238U have been determined by recoil catcher and an off-line γ-ray spectrometric technique using the electron linac, SAPHIR at CEA, Saclay, France. The mass yield distributions were obtained from the fission product yields using charge-distribution corrections. The peak-to-valley (P/V ratio, average light mass (〈A L〉) and heavy mass (〈A H〉) and average number of neutrons (〈v〉) in the bremsstrahlung-induced fission of 238U at different excitation energies were obtained from the mass yield data. From the present and literature data in the 238U (γ, f ) and 238U (n, f ) reactions at various energies, the following observations were obtained: i) The mass yield distributions in the 238U (γ, f ) reaction at various energies of the present work are double-humped, similar to those of the 238U (n, f ) reaction of comparable excitation energy. ii) The yields of fission products for A = 133–134, A = 138–140, and A = 143–144 and their complementary products in the 238U (γ, f) reaction are higher than other fission products due to the nuclear structure effect. iii) The yields of fission products for A = 133–134 and their complementary products are slightly higher in the 238U (γ, f ) than in the 238U (n, f ) , whereas for A = 138–140 and 143–144 and their complementary products are comparable. iv) With excitation energy, the increase of yields of symmetric products and the decrease of the peak-to-valley (P/V ratio in the 238U (γ, f) reaction is similar to the 238U (n, f) reaction. v) The increase of 〈v〉 with excitation energy is also similar between the 238U (γ, f ) and 238U (n, f) reactions. However, it is surprising to see that the 〈A L〉 and 〈A H〉 values with excitation energy behave entirely differently from the 238U (γ, f ) and 238U (n, f ) reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic, New York, 1973).

  2. C. Wagemans, The Nuclear Fission Process (CRC, London, 1990).

  3. R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236, 683 (2006).

    Article  Google Scholar 

  4. S. Ganesan, Creation of Indian experimental benchmarks for thorium fuel cycle, IAEA Coordinated research project on “Evaluated data for thorium--uranium fuel cycle”, in Third Research Co-ordination Meeting, 30 January to 2 February 2006, Vienna, Austria, INDC (NDS)-0494 (2006).

  5. F. Carminati, R. Klapisch, J.P. Revol, J.A. Rubia, C. Rubia, CERN/AT/93-49 (ET) 1993.

  6. C. Rubia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Mandrilion, J.P. Revol, Ch. Roche, CERN/AT/95-44 (ET) 1995, CERN/AT/95-53(ET) 1995, CERN/LHC/96-01 (LET) 1996, CERN/LHC/97-01 (EET) 1997.

  7. C.D. Bowman, AIP Conf. Proc. 346, 22 (1994).

    Article  Google Scholar 

  8. Accelerator Driven Systems: Energy Generation and Transmutation of NuclearWaste, Status report, IAEA, Vienna, IAEA-TECDO-985, Nov. 1997.

  9. C.D. Bowman, Annu. Rev. Nucl. Part. Sci. 48, 505 (1998).

    Article  ADS  Google Scholar 

  10. S. Ganesan, Pramana, J. Phys. 68, 257 (2007).

    Article  ADS  Google Scholar 

  11. Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: Options and Trends.

  12. L. Mathieu, Proposition for a very simple Thorium Molten Salt reactor, in Proceedings of the Global International Conference, Tsukuba, Japan, 2005 (2005) paper No. 428.

  13. A. Nuttin, D. Heuer, A. Biliebaud, R. Brissot, C. Le Brun, E. Liatard, J.M. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Proc. Nucl. Energy 46, 77 (2005).

    Article  Google Scholar 

  14. T.R. Allen, D.C. Crawford, Lead-Cooled Fast Reactor Systems and the Fuels and Materials Challenges, in Science and Technology of Nuclear Installations, (2007) 97486.

  15. Annual Project Status Report 2000, MIT-ANP-PR-071, INEFL/EXT-2009-00994.

  16. E.A.C. Crouch, At. Data Nucl. Data Tables 19, 417 (1977).

    Article  ADS  Google Scholar 

  17. B.F. Rider, Compilation of fission products yields, NEDO, 12154 3c ENDF-327, Valecicecitos Nuclear Centre, 1981.

  18. J.R. England, B.F. Rider, Evaluation and compilation of fission products yields, ENDF/BVI, 1989, 1992.

  19. M. James, R. Mills, Neutron fission products yields, UKFY2, 1991, JEF-2.2, 1993.

  20. A.C. Wahl, At. Data Nucl. Data Tables 39, 1 (1988).

    Article  ADS  Google Scholar 

  21. H. Naik, A.G.C. Nair, P.C. Kalsi, A.K. Pandey, R.J. Singh, A. Ramaswami, R.H. Iyer, Radiochim. Acta 75, 69 (1996).

    Google Scholar 

  22. R.H. Iyer, H. Naik, A.K. Pandey, P.C. Kalsi, R.J. Singh, A. Ramaswami, A.G.C. Nair, Nucl. Sci. Eng. 135, 227 (2000).

    Google Scholar 

  23. K.M. Brown, Phys. Rev. 126, 627 (1962).

    Article  ADS  Google Scholar 

  24. M.P. Menon, P.K. Kurdo, J. Inorg. Nucl. Chem. 26, 40 (1964).

    Article  Google Scholar 

  25. N.L. Borisova, S.M. Dubrovina, V.I. Novgorodtseva, V.A. Pchelin, V.A. Shigin, V.M. Shubko, Sov. J. Nucl. Phys. 6, 331 (1968).

    Google Scholar 

  26. D.J. Gorman, R.H. Tomilson, Can. J. Chem. 46, 1663 (1968).

    Article  Google Scholar 

  27. S.J. Lyle, J. Sellear, Radiochim. Acta 12, 43 (1968).

    Google Scholar 

  28. S.J. Lyle, R. Wellum, Radiochim. Acta 13, 167 (1969).

    Google Scholar 

  29. S.G. Birgul, S.J. Lyle, R. Wellum, Radiochim. Acta 16, 104 (1971).

    Google Scholar 

  30. J.P. Bocquet, Nucl. Phys. 189, 556 (1972).

    Article  Google Scholar 

  31. D.R. Nethaway, B. Mendoza, Phys. Rev. C 6, 1821, 1827 (1972).

    ADS  Google Scholar 

  32. J. Blachot, L.C. Carraz, P. Cavalini, C. Chauvin, A. Ferrieu, A. Moussa, J. Inorg. Nucl. Chem. 36, 495 (1974).

    Article  Google Scholar 

  33. J.T. Harvey, D.E. Adams,W.D. James, J.N. Beck, J.L. Meason, P.K. Kuroda, J. Inorg. Nucl. Chem. 37, 2243 (1975).

    Article  Google Scholar 

  34. D.E. Adams, W.D. James, J.N. Beck, P.K. Kuroda, J. Inorg. Nucl. Chem. 37, 419 (1975).

    Article  Google Scholar 

  35. M. Rajagopalan, H.S. Pruys, A. Grutter, E.A. Hermes, H.R. von Gunten, J. Inorg. Nucl. Chem. 38, 351 (1976).

    Article  Google Scholar 

  36. S. Daroczy, P. Raics, S. Naggy, L. Koever, I. Hamvas, E. Gorma, ATOMKI Kozl. 18, 317 (1976).

    Google Scholar 

  37. T.C. Chapman, G.A. Anzelon, G.C. Spitale, D.R. Nethaway, Phys. Rev. C 17, 1089 (1978).

    Article  ADS  Google Scholar 

  38. S. Nagy, K.F. Flynn, J.E. Gindler, J.W. Meadows, L.E. Glendenin, Phys. Rev. C 17, 163 (1978).

    Article  ADS  Google Scholar 

  39. L. Wexin, S. Tongyu, Z. Manjiao, D. Tianrong, S. Xiuhua, He Huaxue, Yu F. Huakue, High Energy Phys. Nucl. Phys. 2, 9 (1980) and 5.

    Google Scholar 

  40. L. Ze, Z. Chunhua, L. Conggui, W. Xiuzhi, Q. Limkun, C. Anzhi, L. Huijung, Z. Sujing, L. Yonghui, Ju Changxin, L. Daming, T. Peija, M. Jiangchen, J. Kixing, High Energy Phys. J. Nucl. Phys. 7, 97 (1985).

    Google Scholar 

  41. L. Conggui, L. Huijun, L. Yonghui, (Chineese), High Energy Phys. Nucl. Phys. 7, 235 (1985).

    Google Scholar 

  42. A. Afarideh, K.R. Annole, Ann. Nucl. Energy 16, 313 (1989).

    Article  Google Scholar 

  43. Z. Li, X. Wang, K. Jing, A. Cui, D. Liu, S. Su, P. Tang, T. Chih, S. Zhang, J. Gao, Radiochim. Acta 64, 95 (1994).

    Google Scholar 

  44. G. Lhersonnau, P. Denloov, G. Canchel, J. Huikari, J. Jardin, A. Tokinen, V. KOlhinen, C. Lau, L. Lebroton, A.C. Mueller, A. Nieminen, S. Nummela, H. Penttila, K. Perajavi, Z. Radivojevic, V. Rubchenya, M.G. Saint-Laurent, W.H. Trzaska, D. Vakhtin, J. Vervier, A.C. Villari, J.C. Viang, J. Aystoe, Eur. Phys. J. A 9, 385 (2000).

    Article  ADS  Google Scholar 

  45. I. Clenk, Radiochim. Acta 85, 85 (1999) and 89.

    Google Scholar 

  46. J. Laurec, A. Adam, T. DeBruyne, E. Brauge, T. Granier, J. Aupiais, O. Barsillon, G. Lepetit. N. Authier, P. Casoli, Nucl. Data Sheet 111, 2965 (2010).

    Article  ADS  Google Scholar 

  47. I.V. Ryzhov, S.G. Yavshits, G.A. Tutin, N.V. Kovalev, A.V. Saulski, N.A. Kudryashev, A.V. Saulski, N.A. Kudryashev, M.S. Onegin, L.A. Vaishnene, Yu.A. Gavrikov, O.T. Grudzevich, V.D. Simutkin, S. Pomp, J. Blomgren, M. Osterlund, P. Andersson, R. Bevilacqua, J. Meulders, R. Prieels, Phys. Rev. C 85, 054603 (2011).

    Article  ADS  Google Scholar 

  48. H. Naik, V.K. Mulik, P.M. Prajapati. B.S. Shivashankar, S.V. Suryanarayana, K.C. Jagadeesan, S.V. Thakare, S.C. Sharma, A. Goswami, Nucl. Phys. A 913, 185 (2013).

    Article  ADS  Google Scholar 

  49. K.-H. Schmidt, S. Steinhauser, C. Bockstiegel, A. Rewe, A. Heinz, A.R. Junghans, J. Benlliure, H.-G. Clerc, M. de Jong, J. Muller, M. Pfutzner, B. Voss, Nucl. Phys. A 665, 211 (2000).

    Article  ADS  Google Scholar 

  50. S. Steinhauser, J. Benlliure, C. Bockstiegel, H.-G. Clerc, A. Heinz, A. Rewe, M. de Jong, A.R. Junghans, J. Muller, M. Pfutzner, K.-H. Schmidt, Nucl. Phys. A 634, 89 (1998).

    Article  ADS  Google Scholar 

  51. J. Benlliure, A.R. Junghans, K.-H. Schmidt, Eur. Phys. J. A 13, 93 (2002).

    ADS  Google Scholar 

  52. R.A. Schmitt, N. Sugarman, Phys. Rev. 95, 1260 (1954).

    Article  ADS  Google Scholar 

  53. H.G. Richter, C.D. Coryell, Phys. Rev. 95, 1550 (1954).

    Article  ADS  Google Scholar 

  54. L. Katz, T.M. Kavanagh, A.G.W. Cameron, E.C. Bailey, J.W.T. Spinks, Phys. Rev. 99, 98 (1958).

    Article  ADS  Google Scholar 

  55. J.L. Meason, P.K. Kuroda, Phys. Rev. 142, 691 (1966).

    Article  ADS  Google Scholar 

  56. I.R. Willams, C.B. Fulmer, G.F. Dell, M.J. Engebretson, Phys. Lett. B 26, 140 (1968).

    Article  ADS  Google Scholar 

  57. L.H. Gevaert, R.E. Jervis, S.C. Subbarao, H.D. Sharma, Can. J. Chem. 48, 652 (1970).

    Article  Google Scholar 

  58. B. Schrøder, G. Nydahl, B. Forkman, Nucl. Phys. A 143, 449 (1970).

    Article  ADS  Google Scholar 

  59. A. Chattopadhyay, K.A. Dost, I. Krajbich, H.D. Sharma, J. Inorg. Nucl. Chem. 35, 2621 (1973).

    Article  Google Scholar 

  60. D. Swindle, R. Wright, K. Takahashi, W.H. Rivera, L. Meason, Nucl. Sci. Eng. 52, 466 (1973).

    Google Scholar 

  61. A. De Clercq, E. Jacobs, D. De Frenne, H. Thierens, P. D’hondt, A.J. Deruytter, Phys. Rev. C 13, 1536 (1976).

    Article  ADS  Google Scholar 

  62. H. Thierens, D. De Frenne, E. Jacobs, A. De Clercq, P. D’Hondt, A.J. Deruytter, Phys. Rev. C 14, 1058 (1976).

    Article  ADS  Google Scholar 

  63. W.D. James, D.E. Adams, R.A. Sigg, J.T. Harvey, J.L. Meason, J.N. Beck, P.K. Kuroda, H.L. Wright, J.C. Hogan, J. Inorg. Nucl. Chem. 38, 1109 (1978).

    Article  Google Scholar 

  64. E. Jacobs, H. Thierens, A. De Frenne, A. De Clercq, P. D’Hondt, P. De Gelder, A.J. Deruytter, Phys. Rev. C 19, 422 (1979).

    Article  ADS  Google Scholar 

  65. E. Jacobs, A. De Clercq, H. Thierens, D. De Frenne, P. D’hondt, P. De Gelder, A.J. Deruytter, Phys. Rev. C 20, 2249 (1979).

    Article  ADS  Google Scholar 

  66. E. Jacobs, H. Thierens, D. De Frenne, A. De Clercq, P. D’Hondt, P. De Gelder, A.J. Deruytter, Phys. Rev. C 21, 237 (1980).

    Article  ADS  Google Scholar 

  67. A. Yamadera, T. Kase, T. Nakamura, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Moto, Japan, 1988 (Japan Atomic Energy Research Institute, Tokai, Japan, 1988) p. 1147.

  68. S. Pomme, E. Jacobs, K. Persyn, D. De Frenne, K. Govaert, M.L. Yoneama, Nucl. Phys. A 560, 689 (1993).

    Article  ADS  Google Scholar 

  69. S. Pomme, E. Jacobs, M. Piessens, D. De Frenne, K. Persyn, K. Govaert, N.-L. Yoneama, Nucl. Phys. A 572, 237 (1994).

    Article  ADS  Google Scholar 

  70. K. Persyn, E. Jacobs, S. Pomme, D. De Frenne, K. Govaert, M.-L. Yoneama, Nucl. Phys. A 615, 198 (1997).

    Article  ADS  Google Scholar 

  71. A. Gook, M. Chernykh, C. Eckardt, J. Enders, P. von Neumann-Cosel, A. Oberstedt, S. Oberestedt, A. Richter, Nucl. Phys. A 851, 1 (2011).

    Article  ADS  Google Scholar 

  72. H. Naik, V.T. Nimje, D. Raj, S.V. Suryanarayana, A. Goswami, S. Singh, S.N. Acharya, K.C. Mttal, S. Ganesan, P. Chandrachoodan, V.K. Manchanda, V. Venugopal, S. Banarjee, Nucl. Phys. A 853, 1 (2011).

    Article  ADS  Google Scholar 

  73. H. Naik, R.J. Singh, R.H. Iyer, Eur. Phys. J. A 16, 495 (2003).

    Article  ADS  Google Scholar 

  74. U. Brossa, S. Grossmann, A. Muller, Phys. Rep. 197, 167 (1990).

    Article  ADS  Google Scholar 

  75. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976).

    Article  ADS  Google Scholar 

  76. W.R. Nelson, H. Hirayama, D.W.O. Rogers, MAC report 265, 1985.

  77. A.I. Blokhin, A.S. Soldatov, Phys. At. Nucl. 72, 917 (2009).

    Article  Google Scholar 

  78. J.T. Caldwell, E.J. Dowdy, B.L. Berman, R.A. Alvarez, P. Meyer, Phys. Rev. C 21, 1215 (1980).

    Article  ADS  Google Scholar 

  79. M. Veyssiere, H. Bell, R. Bergere, P. Carlos, A. Lepretre, K. Kernbath, Nucl. Phys. A 199, 45 (1973).

    Article  ADS  Google Scholar 

  80. E. Browne, R.B. Firestone, in Table of Radioactive Isotopes, edited by V.S. Shirley (Wiley, New York, 1986).

  81. J. Blachot, C. Fiche, Ann. Phys. Suppl. 6, 3 (1981).

    Google Scholar 

  82. H. Umezawa, S. Baba, H. Baba, Nucl. Phys. A 160, 65 (1971).

    Article  ADS  Google Scholar 

  83. N. Sugarman, A. Turkevich, C.D. Coryell, N. Sugarman (Editors), in Radiochemical Studies: The Fission Product (McGraw-Hill, New York, 1951) p. 1396.

  84. M. Strecker, R. Wein, P. Plischke, W. Scobel, Phys. Rev. C 41, 2172 (1990).

    Article  ADS  Google Scholar 

  85. C. Agarwal, A. Goswami, P.C. Kalsi, S. Singh, A. Mhatre, A. Ramaswami, J. Radioanal. Nucl. Chem. 275, 445 (2008).

    Article  Google Scholar 

  86. H. Naik, A. Goswami, G.N. Kim, M.W. Lee, K.S. Kim, S.V. Suryanarayana, E.A. Kim, M.-H. Cho, Phys. Rev. C 86, 054607 (2012).

    Article  ADS  Google Scholar 

  87. S. Bjornholm, J.E. Lynn, Rev. Mod. Phys. 52, 725 (1980).

    Article  ADS  Google Scholar 

  88. H. Nifenenecker, C. Signabieux, R. Babinet, J. Poitou, in Physics and Chemistry of Fission, Vol. I (IAEA, Vienna, 1973) p. 17.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naik.

Additional information

Communicated by J. Äystö

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, H., Carrel, F., Kim, G.N. et al. Mass yield distributions of fission products from photo-fission of 238U induced by 11.5–17.3 MeV bremsstrahlung. Eur. Phys. J. A 49, 94 (2013). https://doi.org/10.1140/epja/i2013-13094-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13094-7

Keywords

Navigation