Skip to main content
Log in

High-precision mass measurements of 203-207Rn and 213Ra with SHIPTRAP

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The masses of the nuclides 203-207Rn and 213Ra were measured directly for the first time with the Penning-trap mass spectrometer SHIPTRAP at GSI Darmstadt. The results confirm the previously determined mass values. The mass uncertainties for 205Rn and 213Ra were significantly reduced. The results are relevant for the investigation of the nuclear shell structure between N = 82 and N = 126 . As an indicator of structural changes the two-neutron separation energies \( S_{2n}(Z,N)\) have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Brodeur et al., Phys. Rev. Lett. 108, 052504 (2012)

    Article  ADS  Google Scholar 

  2. U. Hager et al., Phys. Rev. C 75, 064302 (2007)

    Article  ADS  Google Scholar 

  3. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007)

    Article  ADS  Google Scholar 

  4. M. Dworschak et al., Phys. Rev. C 81, 064312 (2010)

    Article  ADS  Google Scholar 

  5. M. Block et al., Nature 463, 785 (2010)

    Article  ADS  Google Scholar 

  6. K. Blaum, Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  7. L. Schweikhard, G. Bollen (Editors), Ultra-accurate mass spectrometry and related topics, in Int. J. Mass Spectrom., Vol. 251 (Elsevier, 2006) issues 2--3.

  8. Yu. A. Litvinov et al., Nucl. Phys. A 756, 3 (2005)

    Article  ADS  Google Scholar 

  9. M. Block et al., Eur. Phys. J. D 45, 39 (2007)

    Article  ADS  Google Scholar 

  10. S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)

    Article  ADS  Google Scholar 

  11. Evaluated Nuclear Structure Data File (ENSDF) www.nndc.bnl.gov/ensdf/

  12. A.Y. Deo et al., Phys. Rev. C 81, 024322 (2010)

    Article  ADS  Google Scholar 

  13. W. Reisdorf, Z. Phys. A 300, 227 (1981)

    Article  ADS  Google Scholar 

  14. J.B. Neumayr et al., Nucl. Instrum. Methods Phys. Res. Sect. B 244, 489 (2006)

    Article  ADS  Google Scholar 

  15. W. Paul, Rev. Mod. Phys. 62, 531 (1990)

    Article  ADS  Google Scholar 

  16. G. Savard et al., Phys. Lett. A 158, 247 (1991)

    Article  ADS  Google Scholar 

  17. D. Neidherr et al., Nucl. Instrum. Methods Phys. Res. Sect. B 266, 4556 (2008)

    Article  ADS  Google Scholar 

  18. G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980)

    Article  ADS  Google Scholar 

  19. G. Bollen et al., J. Appl. Phys. 68, 4355 (1990)

    Article  ADS  Google Scholar 

  20. M. König et al., Int. J. Mass Spectrom Ion Proc. 142, 95 (1995)

    Article  ADS  Google Scholar 

  21. A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

  22. L. Schweikhard et al., Eur. J. Mass Spectrom. 11, 457 (2005)

    Article  Google Scholar 

  23. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)

    Article  ADS  Google Scholar 

  24. C. Droese et al., Nucl. Instrum. Methods Phys. Res. Sect. A 632, 157 (2011)

    Article  ADS  Google Scholar 

  25. A. Chaudhuri et al., Eur. Phys. J. D 45, 47 (2007)

    Article  ADS  Google Scholar 

  26. P.J. Mohr, B.N. Taylor, J. Phys. Chem. Ref. Data 28, 1713 (1999)

    Article  ADS  Google Scholar 

  27. J. Wauters et al., Phys. Rev. C 47, 1447 (1993)

    Article  ADS  Google Scholar 

  28. K.Valli, M.J. Nurmia, E.K. Hyde, Phys. Rev. 159, 1013 (1967)

    Article  ADS  Google Scholar 

  29. M.J. Leddy et al., Phys. Rev. C 51, 1047(R) (1995)

    Article  ADS  Google Scholar 

  30. M. Leino et al., Z. Phys. A 355, 157 (1996)

    ADS  Google Scholar 

  31. P. Hornshøj et al., Nucl. Phys. A 163, 277 (1971)

    Article  ADS  Google Scholar 

  32. N.A. Golokov et al., Izv. Akad. Nauk SSSR Ser. Fiz. 35, 2272 (1971)

    Google Scholar 

  33. K. Valli, E.K. Hyde, W. Treytl, J. Inorg. Nucl. Chem. 29, 2503 (1967)

    Article  Google Scholar 

  34. K. Valli, W. Treytl, E.K. Hyde, Phys. Rev. 161, 1284 (1967)

    Article  ADS  Google Scholar 

  35. D.G. Raich et al., Z. Phys. A 279, 301 (1976)

    Article  ADS  Google Scholar 

  36. R.C. Thompson et al., J. Phys. G 9, 443 (1983)

    Article  ADS  Google Scholar 

  37. J. Kilgallon et al., Phys. Lett. B 405, 31 (1997)

    Article  ADS  Google Scholar 

  38. C.F.V. Weizsäcker, Z. Phys. 96, 431 (1935)

    Article  ADS  MATH  Google Scholar 

  39. J.W. Rohlf, Modern Physics from a to Z0 (Wiley, 1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Droese.

Additional information

Communicated by B.R. Fulton

Rights and permissions

Reprints and permissions

About this article

Cite this article

Droese, C., Ackermann, D., Andersson, L.L. et al. High-precision mass measurements of 203-207Rn and 213Ra with SHIPTRAP. Eur. Phys. J. A 49, 13 (2013). https://doi.org/10.1140/epja/i2013-13013-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13013-0

Keywords

Navigation