Skip to main content
Log in

Boost operators in Coulomb gauge QCD: The pion form factor and Fock expansions in \( \phi\) radiative decays

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this article we re-derive the Boost operators in Coulomb Gauge Yang-Mills theory employing the path integral formalism and write down the complete operators for QCD. We immediately apply them to note that what are usually called the pion square, quartic ... charge radii, defined from derivatives of the pion form factor at zero squared momentum transfer, are completely blurred out by relativistic and interaction corrections, so that it is not clear at all how to interpret these quantities in terms of the pion charge distribution. The form factor therefore measures matrix elements of powers of the QCD boost and Mœller operators, weighted by the charge density in the target’s rest frame. In addition we remark that the decomposition of the \( \eta{^\prime}\) wave function in quarkonium, gluonium, ..., components attempted by the KLOE Collaboration combining data from \( \phi\) radiative decays, requires corrections due to the velocity of the final-state meson recoiling against a photon. This will be especially important if such decompositions are to be attempted with data from J/\( \psi\) decays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Rose, Phys. Rev. 73, 279 (1948)

    Article  MATH  ADS  Google Scholar 

  2. J. Gasser, U.-G. Meißner, Nucl. Phys. B 357, 90 (1991)

    Article  ADS  Google Scholar 

  3. F.K. Guo, C. Hanhart, F.J. Llanes-Estrada, U.G. Meissner, Phys. Lett. B 678, 90 (2009) [arXiv:0812.3270 [hep-ph]]

    Article  ADS  Google Scholar 

  4. NA7 Collaboration (S.R. Amendolia et al.), Nucl. Phys. B 277, 168 (1986)

    Article  Google Scholar 

  5. A. Huber et al., Phys. Rev. Lett. 80, 468 (1998)

    Article  ADS  Google Scholar 

  6. J.L. Friar, J. Martorell, D.W.L. Sprung, Phys. Rev. A 56, 4579 (1997) [arXiv:nucl-th/9707016]

    Article  ADS  Google Scholar 

  7. J.L. Friar, Ann. Phys. (N.Y.) 81, 332 (1973)

    Article  ADS  Google Scholar 

  8. S.J. Brodsky, J.R. Primack, Ann. Phys. (N.Y.) 52, 315 (1969)

    Article  ADS  Google Scholar 

  9. H.M. Choi, C.R. Ji, Phys. Rev. D 77, 113004 (2008) [arXiv:0803.2604 [hep-ph]]

    Article  ADS  Google Scholar 

  10. E.P. Biernat, W. Schweiger, K. Fuchsberger, W.H. Klink, Phys. Rev. C 79, 055203 (2009) [arXiv:0902.2348 [nucl-th]]

    Article  ADS  Google Scholar 

  11. W. Plessas, S. Boffi, L.Y. Glozman, W. Klink, M. Radici, R.F. Wagenbrunn, Nucl. Phys. A 699, 312 (2002)

    Article  ADS  Google Scholar 

  12. S.J. Brodsky, G.F. de Teramond, Phys. Rev. D 77, 056007 (2008) [arXiv:0707.3859 [hep-ph]]

    Article  ADS  Google Scholar 

  13. A. Szczepaniak, C.R. Ji, S.R. Cotanch, Phys. Rev. C 52, 2738 (1995)

    Article  ADS  Google Scholar 

  14. KLOE Collaboration (B. Di Micco), Acta Phys. Pol. Suppl. 2, 63 (2009)

    Google Scholar 

  15. KLOE Collaboration (B. Di Micco), Eur. Phys. J. A 38, 129 (2008)

    Article  Google Scholar 

  16. A. Bramon, R. Escribano, M.D. Scadron, Phys. Lett. B 503, 271 (2001) [arXiv:hep-ph/0012049]

    Article  ADS  Google Scholar 

  17. R. Escribano, J. Nadal, JHEP 0705, 006 (2007) [arXiv:hep-ph/0703187]

    Article  ADS  Google Scholar 

  18. R. Escribano, Eur. Phys. J. C 65, 467 (2010) [arXiv:0807.4201 [hep-ph]]

    Article  ADS  Google Scholar 

  19. R. Escribano, Nucl. Phys. Proc. Suppl. 181-182, 226 (2008) [arXiv:0807.4205 [hep-ph]]

    Article  ADS  Google Scholar 

  20. P. Maris, P.C. Tandy, Phys. Rev. C 62, 055204 (2000) [arXiv:nucl-th/0005015]

    Article  ADS  Google Scholar 

  21. R.G. Sachs, Phys. Rev. 126, 2256 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. J.J. Kelly, Phys. Rev. C 66, 065203 (2002) [arXiv:hep-ph/0204239]

    Article  ADS  Google Scholar 

  23. Particle Data Group (C. Amsler et al.), Phys. Lett. B 667, 1 (2008)

    Article  ADS  Google Scholar 

  24. P.A. Boyle et al., JHEP 0807, 112 (2008) [arXiv:0804.3971 [hep-lat]]

    ADS  Google Scholar 

  25. JLQCD and TWQCD Collaborations (S. Aoki et al.), Phys. Rev. D 80, 034508 (2009) [arXiv:0905.2465 [hep-lat]]

    Article  Google Scholar 

  26. R. Frezzotti, V. Lubicz, S. Simula, Phys. Rev. D 79, 074506 (2009) [arXiv:0812.4042 [hep-lat]]

    Article  ADS  Google Scholar 

  27. S. Villalba-Chavez, R. Alkofer, K. Schwenzer, arXiv: 0807.2146 [hep-th]

  28. D. Zwanziger, Nucl. Phys. B 518, 237 (1998)

    Article  MATH  ADS  Google Scholar 

  29. P. Watson, H. Reinhardt, Phys. Rev. D 75, 045021 (2007) [arXiv:hep-th/0612114]

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Besting, D. Schutte, Phys. Rev. D 42, 594 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  31. V.N. Gribov, Nucl. Phys. B 139, 1 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  32. D. Zwanziger, Phys. Rev. D 69, 016002 (2004) [arXiv:hep-ph/0303028]

    Article  ADS  Google Scholar 

  33. H. Reinhardt, P. Watson, Phys. Rev. D 79, 045013 (2009) [arXiv:0808.2436 [hep-th]]

    Article  ADS  Google Scholar 

  34. N.H. Christ, T.D. Lee, Phys. Rev. D 22, 939 (1980) [Phys. Scripta 23

    Article  MathSciNet  ADS  Google Scholar 

  35. C. Feuchter, H. Reinhardt, Phys. Rev. D 70, 105021 (2004) [arXiv:hep-th/0408236]

    Article  MathSciNet  ADS  Google Scholar 

  36. A.P. Szczepaniak, E.S. Swanson, Phys. Rev. D 65, 025012 (2002) [arXiv:hep-ph/0107078]

    Article  ADS  Google Scholar 

  37. A.P. Szczepaniak, Phys. Rev. D 69, 074031 (2004) [arXiv:hep-ph/0306030]

    Article  ADS  Google Scholar 

  38. D.R. Campagnari, H. Reinhardt, A. Weber, Phys. Rev. D 80, 025005 (2009) [arXiv:0904.3490 [hep-th]]

    Article  MathSciNet  ADS  Google Scholar 

  39. P. Watson, H. Reinhardt, Eur. Phys. J. C 65, 567 (2010) [arXiv:0812.1989 [hep-th]]

    Article  ADS  Google Scholar 

  40. P. Bicudo, S.R. Cotanch, F.J. Llanes-Estrada, D.G. Robertson, Eur. Phys. J. C 52, 363 (2007) [arXiv:hep-ph/0602172]

    Article  ADS  Google Scholar 

  41. G.P. Lepage, CLNS-80/447, 1980

  42. F.J. Llanes-Estrada, S.R. Cotanch, Nucl. Phys. A 697, 303 (2002) [arXiv:hep-ph/0101078]

    Article  MATH  ADS  Google Scholar 

  43. A. Szczepaniak, E.S. Swanson, C.R. Ji, S.R. Cotanch, Phys. Rev. Lett. 76, 2011 (1996) [arXiv:hep-ph/9511422]

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Llanes-Estrada.

Additional information

Communicated by V. Vento

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez Rocha, M., Llanes-Estrada, F.J., Schütte, D. et al. Boost operators in Coulomb gauge QCD: The pion form factor and Fock expansions in \( \phi\) radiative decays. Eur. Phys. J. A 44, 411–424 (2010). https://doi.org/10.1140/epja/i2010-10949-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2010-10949-3

Keywords

Navigation