Skip to main content
Log in

About efficient quasi-Newtonian schemes for variational calculations in nuclear structure

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The Broyden-Fletcher-Goldhaber-Shanno (BFGS) quasi-Newtonian scheme is known as the most efficient scheme for variational calculations of energies. This scheme is actually a member of a one-parameter family of variational methods, known as the Broyden \( \beta\) -family. In some applications to light nuclei using microscopically derived effective Hamiltonians starting from accurate nucleon-nucleon potentials, we actually found other members of the same family which have better performance than the BFGS method. We also extend the Broyden \( \beta\) -family of algorithms to a two-parameter family of rank-three updates which has even better performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980).

    Google Scholar 

  2. K.W. Schmid, F. Grummer, Amand Faessler, Ann. Phys. (N.Y.) 180, 1 (1987); Rep. Prog. Phys. 50, 731 (1987).

    Article  ADS  Google Scholar 

  3. G. Puddu, J. Phys. G: Nucl. Part. Phys. 32, 321 (2006).

    Article  ADS  Google Scholar 

  4. C.G. Broyden, Math. Comput. 21, 368 (1977). The β-family is defined as algorithm 2 in sect. 6.

    MathSciNet  Google Scholar 

  5. W. Lederman (Editor), Handbook of Applicable Mathematics, Vol. III, Numerical Methods (John Wiley and Sons, New York, 1981) Chapt. 11.

    Google Scholar 

  6. R. Machleidt, Phys. Rev. C 63, 024001 (2001).

    Article  ADS  Google Scholar 

  7. K. Suzuki, S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980); K. Suzuki, Prog. Theor. Phys. 68, 246 (1982); K. Suzuki, R. Okamoto, Prog. Theor. Phys. 70, 439 (1983).

    Article  ADS  Google Scholar 

  8. P. Navratil, S. Quaglioni, I. Stetcu, B.R. Barrett, J. Phys. G 36, 083101 (2009) and references therein.

    Article  ADS  Google Scholar 

  9. L. Coraggio, A. Covello, A. Gargano, N. Itaco, T.T.S. Kuo, Prog. Part. Nucl. Phys. 62, 136 (2009) and references therein.

    Article  ADS  Google Scholar 

  10. L.C.W. Dixon, J. Optim. Theory Appl. 10, 34 (1972).

    Article  MATH  Google Scholar 

  11. G. Puddu, Eur. Phys. J. A 39, 335 (2009).

    Article  ADS  Google Scholar 

  12. J.D. Holt, T.T.S. Kuo, G.E. Brown, Phys. Rev. C 69, 034329 (2004).

    Article  ADS  Google Scholar 

  13. G. Audi, A.H. Wapstra, Nucl. Phys. A 565, 1 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Puddu.

Additional information

Communicated by T.S. Bíró

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puddu, G. About efficient quasi-Newtonian schemes for variational calculations in nuclear structure. Eur. Phys. J. A 42, 281 (2009). https://doi.org/10.1140/epja/i2009-10866-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2009-10866-6

PACS

Navigation