Skip to main content
Log in

RQM description of the charge form factor of the pion and its asymptotic behavior

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The pion charge and scalar form factors, F 1(Q 2) and F 0(Q 2) , are first calculated in different forms of relativistic quantum mechanics. This is done using the solution of a mass operator that contains both confinement and one-gluon exchange interactions. Results of calculations, based on a one-body current, are compared to experiment for the first one. As could be expected, those point form, and instant and front-form ones in a parallel momentum configuration fail to reproduce experiment. The other results corresponding to a perpendicular momentum configuration (instant form in the Breit frame and front form with q + = 0 do much better. The comparison of charge and scalar form factors shows that the spin-1/2 nature of the constituents plays an important role. Taking into account that only the last set of results represents a reasonable basis for improving the description of the charge form factor, this one is then discussed with regard to the asymptotic QCD power law behavior Q-2. The contribution of two-body currents in achieving the right power law is considered while the scalar form factor, F 0(Q 2) , is shown to have the right power law behavior in any case. The low-Q2 behavior of the charge form factor and the pion decay constant are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Bebek et al., Phys. Rev. D 17, 1693 (1978).

    Article  ADS  Google Scholar 

  2. S.R. Amendolia et al., Nucl. Phys. B 277, 168 (1986).

    Article  ADS  Google Scholar 

  3. J. Volmer et al., Phys. Rev. Lett. 86, 1713 (2001).

    Article  ADS  Google Scholar 

  4. T. Horn et al., Phys. Rev. Lett. 97, 192001 (2006).

    Article  ADS  Google Scholar 

  5. V. Tadevosyan et al., Phys. Rev. C 75, 055205 (2007).

    Article  ADS  Google Scholar 

  6. G.M. Huber et al., nucl-ex/0809.3052.

  7. C.D. Roberts, Nucl. Phys. A 605, 475 (1996).

    Article  ADS  Google Scholar 

  8. P. Maris, C.D. Roberts, Phys. Rev. C 58, 3659 (1998).

    Article  ADS  Google Scholar 

  9. P. Maris, P.C. Tandy, Phys. Rev. C 62, 055204 (2000).

    Article  ADS  Google Scholar 

  10. D. Merten, et al., Eur. Phys. J. A 14, 477 (2002).

    Article  ADS  Google Scholar 

  11. S. Simula, Phys. Rev. C 66, 035201 (2002).

    Article  ADS  Google Scholar 

  12. B. Bakker, H.-M. Choi, C.-R. Ji, Phys. Rev. D 63, 074014 (2001).

    Article  ADS  Google Scholar 

  13. J.P.B.C. de Melo et al., Nucl. Phys. A 707, 399 (2002).

    Article  ADS  Google Scholar 

  14. N. Isgur, C.H. Llewellyn Smith, Phys. Rev. Lett. 52, 1080 (1984).

    Article  ADS  Google Scholar 

  15. P.L. Chung, F. Coester, W.N. Polyzou, Phys. Lett. B 205, 545 (1988).

    Article  ADS  Google Scholar 

  16. F. Cardarelli et al., Phys. Lett. B 332, 1 (1994).

    Article  ADS  Google Scholar 

  17. F. Cardarelli, E. Pace, G. Salmé, S. Simula, Phys. Lett. B 357, 267 (1995).

    Article  ADS  Google Scholar 

  18. H.-M. Choi, C.-R. Ji, Phys. Rev. D 59, 074015 (1999).

    Article  ADS  Google Scholar 

  19. J.P.C.B. de Melo, H.W.L. Naus, T. Frederico, Phys. Rev. C 59, 2278 (1999).

    Article  ADS  Google Scholar 

  20. T.W. Allen, W.H. Klink, Phys. Rev. C 58, 3670 (1998).

    Article  ADS  Google Scholar 

  21. A.F. Krutov, V.E. Troitsky, Phys. Rev. C 65, 045501 (2002).

    Article  ADS  Google Scholar 

  22. A. Amghar, B. Desplanques, L. Theußl, Phys. Lett. B 574, 201 (2003).

    Article  ADS  Google Scholar 

  23. F. Coester, W.N. Polyzou, nucl-th/0405082.

  24. Jun He, B. Julia-Diaz, Yu-bing Dong, Phys. Lett. B 602, 212 (2004).

    Article  ADS  Google Scholar 

  25. Q.B. Li, D.O. Riska, Phys. Rev. C 77, 045207 (2008).

    Article  ADS  Google Scholar 

  26. J.P.B.C. de Melo et al., Nucl. Phys. A 631, 574c (1998).

    Article  ADS  Google Scholar 

  27. B. Bakamjian, L.H. Thomas, Phys. Rev. 92, 1300 (1953).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. A. Amghar, B. Desplanques, L. Theußl, Nucl. Phys. A 694, 439 (2001).

    Article  MATH  ADS  Google Scholar 

  30. A. Amghar, B. Desplanques, Few-Body Syst. 28, 65 (2000).

    Article  ADS  Google Scholar 

  31. A. Amghar, B. Desplanques, L. Theußl, Nucl. Phys. A 714, 213 (2003).

    Article  ADS  Google Scholar 

  32. B. Desplanques, preprint, nucl-th/0407074.

  33. S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975).

    Article  ADS  Google Scholar 

  34. G.R. Farrar, D.R. Jackson, Phys. Rev. Lett. 43, 246 (1979).

    Article  ADS  Google Scholar 

  35. G.P. Lepage, S.J. Brodsky, Phys. Lett. B 87, 359 (1979).

    Article  ADS  Google Scholar 

  36. B. Desplanques, L. Theußl, Eur. Phys. J. A 13, 461 (2002).

    ADS  Google Scholar 

  37. B. Desplanques, L. Theußl, Eur. Phys. J. A 21, 93 (2004).

    Article  ADS  Google Scholar 

  38. B. Desplanques, in NSTAR2004, edited by J.P. Bocquet, V. Kuznetsov, D. Rebreyend (World Scientific, 2005) (nucl-th/0405060).

  39. J.L. Basdevant, S. Boukraa, Z. Phys. C 30, 103 (1986).

    Article  ADS  Google Scholar 

  40. A. Le Youanc, L. Oliver, J.C. Raynal, J. Math. Phys. 38, 3997 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Alabiso, G. Schierholz, Phys. Rev. D 10, 960 (1974).

    Article  ADS  Google Scholar 

  42. B. Desplanques, B. Silvestre-Brac, F. Cano, P. Gonzalez, S. Noguera, Few-Body Syst. 29, 169 (2000).

    Article  ADS  Google Scholar 

  43. B. Desplanques, Nucl. Phys. A 748, 139 (2005).

    Article  ADS  Google Scholar 

  44. B. Bakamjian, Phys. Rev. 121, 1849 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. S.N. Sokolov, Theor. Math. Phys. 62, 140 (1985).

    Article  Google Scholar 

  46. W.H. Klink, Phys. Rev. C 58, 3587 (1998).

    Article  ADS  Google Scholar 

  47. B. Desplanques, Y.B. Dong, Eur. Phys. J. A 37, 33 (2008).

    Article  ADS  Google Scholar 

  48. B. Desplanques, L. Theußl, S. Noguera, Phys. Rev. C 65, 038202 (2002).

    Article  ADS  Google Scholar 

  49. A.V. Efrimov, A.V. Radyushkin, Phys. Lett. B 94, 245 (1980).

    Article  ADS  Google Scholar 

  50. R. Tarrach, Z. Phys. C 2, 221 (1979).

    Article  ADS  Google Scholar 

  51. S.B. Gerasimov, Yad. Fiz. 29, 513 (1979).

    Google Scholar 

  52. V. Bernard, U. Meisner, Phys. Rev. Lett. 61, 2296 (1988).

    Article  ADS  Google Scholar 

  53. J. Carbonell, B. Desplanques, V.A. Karmanov, J.-F. Mathiot, Phys. Rep. 300, 215 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  54. V. Braguta, W. Lucha, D. Melikhov, Phys. Lett. B 661, 354 (2008).

    ADS  Google Scholar 

  55. S. Godfrey, N. Isgur, Phys. Rev. D 32, 189 (1985).

    Article  ADS  Google Scholar 

  56. J. Carlson, J.B. Kogut, V.R. Pandharipande, Phys. Rev. D 28, 2807 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Desplanques.

Additional information

Communicated by V. Vento

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desplanques, B. RQM description of the charge form factor of the pion and its asymptotic behavior. Eur. Phys. J. A 42, 219 (2009). https://doi.org/10.1140/epja/i2009-10864-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2009-10864-8

PACS

Navigation