Skip to main content
Log in

Decay rates of quarkonia with NRQCD formalism using spectroscopic parameters of potential models

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Decay rates of quarkonia are studied within the framework of NRQCD formalism. The basic parameters of the formalism have been obtained from different potential schemes studied for the spectra of quarkonia. We estimate the heavy-quarkonia mass spectra, radiative and leptonic widths and compare them with other contemporary theoretical approaches and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Brambilla, NRQCD and Quarkonia, arXiv:hep-ph/ 0702105v2 (2007).

  2. M.B. Voloshin, hep-ph/0711.4556v3 (2008).

  3. E. Eichten, S. Godfrey, Hanna Mahlke, Jonathan L. Rosner, hep-ph/0701208v3 (2008).

  4. W. Buchmüller, S.H.H. Tye, Phys. Rev. D 24, 132 (1981).

    Google Scholar 

  5. A. Martin, Phys. Lett. B 93, 338 (1980).

    Google Scholar 

  6. C. Quigg, J.L. Rosner, Phys. Lett. B 71, 153 (1977).

    Google Scholar 

  7. E. Eichten, Phys. Rev. D 17, 3090 (1978).

    Google Scholar 

  8. A.K. Rai, R.H. Parmar, P.C. Vinodkumar, J. Phys. G 28, 2275 (2002).

    Google Scholar 

  9. A.K. Rai, J.N. Pandya, P.C. Vinodkumar, J. Phys. G 31, 1453 (2005).

    Google Scholar 

  10. A.K. Rai, P.C. Vinodkumar, Pramana J. Phys. 66, 953 (2006) hep-ph/0606194.

  11. S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.V. Tkabladze, Phys. Rev. D 51, 3613 (1995).

    Google Scholar 

  12. H. Khan, P. Hoodbhoy, Phys. Rev. D 53, 2543 (1996).

    Google Scholar 

  13. G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51, 1125 (1995)

    Google Scholar 

  14. G.T. Bodwin, D. Kang, J. Lee, Phys. Rev. D 74, 014014 (2006).

    Google Scholar 

  15. G.T. Bodwin, H.S. Chang, D. Kang, J. Lee, Chaehyun Yu, Phys. Rev. D 77, 094017 (2008).

    Google Scholar 

  16. J.N. Pandya, P.C. Vinodkumar, Pramana J. Phys. 57, 821 (2001).

    Google Scholar 

  17. P.C. Vinodkumar, J.N. Pandya, V.M. Bannur, S.B. Khadkikar, Eur. Phys. J. A 4, 83 (1999).

    Google Scholar 

  18. S.B. Khadkikar, S.K. Gupta, Phys. Lett. B 124, 523 (1983).

    Google Scholar 

  19. S.K. Gupta, S.B. Khadkikar, Phys. Rev. D 36, 307 (1987).

    Google Scholar 

  20. S.N. Jena, M.R. Behera, S. Panda, Phys. Rev. D 55, 291 (1997).

    Google Scholar 

  21. K.B. Vijaya Kumar, S.B. Khadkikar, Nucl. Phys. A 556, 396 (1993).

    Google Scholar 

  22. K. Gottfried, V.F. Weisskopf, Concepts of Particle Physics (Oxford University Press, 1986).

  23. N. Brambilla, Y. Sumino, A. Vairo, Phys. Lett. B 513, 381 (2001).

    Google Scholar 

  24. P.C. Vinodkumar, K.B. Vijaya Kumar, S.B. Khadkikar, Pramana J. Phys. 39, 47 (1992).

    Google Scholar 

  25. Particle Data Group (Y.M. Yao), J. Phys. G 33, 1 (2006).

    Google Scholar 

  26. T. Barnes, S. Godfrey, E.S. Swanon, Phys. Rev. D 72, 054026 (2005).

    Google Scholar 

  27. J. Vijande, N. Barnea, A. Valcarce, Int. J. Mod. Phys. A 22, 561 (2007).

    Google Scholar 

  28. D. Ebert, N. Faustov, V.O. Galkin, Phys. Rev. D 67, 014027 (2003).

    Google Scholar 

  29. A.E. Bernardini, C. Dobrigkeit, J. Phys. G 29, 1439 (2003).

    Google Scholar 

  30. S. Radford, W.W. Repko, Int. J. Mod. Phys. A 20, 3774 (2005).

    Google Scholar 

  31. R.A. Coimbra, O. Oliveira, hep-ph/0610142 (2006).

  32. S.F. Radford, W.W. Repko, Phys. Rev. D 75, 074031 (2007).

    Google Scholar 

  33. J. Vijande, F. Fernandez, A. Valcarce, J. Phys. G 31, 481 (2005).

    Google Scholar 

  34. A.V. Shoulgin, G.M. Vereshkov, O.V. Lutchenko, J. Phys. G 29, 1245 (2003).

    Google Scholar 

  35. S. Eidelman, Phys. Lett. B 592, 1 (2004).

    Google Scholar 

  36. T. Appelquist, H.D. Politzer, Phys. Rev. Lett. 34, 43 (1975).

    Google Scholar 

  37. A. De Rujula, S.L. Glashow, Phys. Rev. D 38, 46 (1975).

    Google Scholar 

  38. R. Barbieri, G. Curci, E. d'Emilio, E. Remiddi, Nucl. Phys. B 154, 535 (1979).

    Google Scholar 

  39. R. Van Royen, V.F. Weisskopf, Nuovo Cimento 50, 617 (1967).

    Google Scholar 

  40. C. Quigg, J.L. Rosner, Phys. Rep. 56, 222 (1979).

    Google Scholar 

  41. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978).

    Google Scholar 

  42. S.M. Ikhdair, R. Sever, Int. J. Mod. Phys. A 21, 3989 (2006).

    Google Scholar 

  43. V.V. Anisovich, L.G. Dakhno, M.A. Matveev, V.A. Nikonov, A.V. Sarantsev, Phys. At. Nucl. 70, 63 (2007).

    Google Scholar 

  44. N. Brambilla, CERN report 487 (2005) hep-ph/ 0412158.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Pandya.

Additional information

Communicated by Bo-Qiang Ma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rai, A.K., Pandya, J.N. & Vinodkumar, P.C. Decay rates of quarkonia with NRQCD formalism using spectroscopic parameters of potential models. Eur. Phys. J. A 38, 77–84 (2008). https://doi.org/10.1140/epja/i2008-10639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10639-9

PACS

Navigation