Skip to main content
Log in

Quantum Monte Carlo calculation for the neutron-rich Ca isotopes

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We computed ground-state energies of calcium isotopes from 42Ca to 48Ca by means of the Auxiliary Field Diffusion Monte Carlo (AFDMC) method. Calculations were performed by replacing the 40Ca core with a mean-field self-consistent potential computed using the Skyrme interaction. The energy of the external neutrons is calculated by projecting the ground state from a wave function built with the single-particle orbitals computed in the self-consistent external potential. The shells considered were the 1F 7/2 and the 1F 5/2 . The Hamiltonian employed is semi-realistic and includes tensor, spin-orbit and three-body forces. While absolute binding energies are too deep if compared with experimental data, the differences between the energies for nearly all isotopes are in very good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kamada, A. Nogga, W. Glöckle, E. Hiyama, M. Kamimura, K. Varga, Y. Suzuki, M. Viviani, A. Kievsky, S. Rosati, J. Carlson, Steven C. Pieper, R.B. Wiringa, P. Navrátil, B.R. Barrett, N. Barnea, W. Leidemann, G. Orlandini, Phys. Rev. C 64, 044001 (2001).

    Article  ADS  Google Scholar 

  2. M. Viviani, Eur. Phys. J. A 31, 429 (2007).

    Article  ADS  Google Scholar 

  3. Doron Gazit, Sonia Bacca, Nir Barnea, Winfried Leidemann, Giuseppina Orlandini, Phys. Rev. Lett. 96, 112301 (2006).

    Article  ADS  Google Scholar 

  4. M. Viviani, A. Kievsky, S. Rosati, Phys. Rev. C 71, 024006 (2005).

    Article  ADS  Google Scholar 

  5. Nir Barnea, Winfried Leidemann, Giuseppina Orlandini, Phys. Rev. C 61, 054001 (2000).

    Article  ADS  Google Scholar 

  6. Nir Barnea, Winfried Leidemann, Giuseppina Orlandini, Nucl. Phys. A 693, 565 (2001).

    Article  MATH  ADS  Google Scholar 

  7. Steven C. Pieper, K. Varga, R.B. Wiringa, Phys. Rev. C 66, 044310 (2002).

    Article  ADS  Google Scholar 

  8. Steven C. Pieper, Nucl. Phys. A 751, 516 (2005).

    Article  ADS  Google Scholar 

  9. J. Carlson, J. Morales, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 68, 025802 (2003).

    Article  ADS  Google Scholar 

  10. Xinhua Bai, Jimin Hu, Phys. Rev. C 56, 1410 (1997).

    Article  ADS  Google Scholar 

  11. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  12. F. Arias de Saavedra, C. Bisconti, G. Co', A. Fabrocini, Phys. Rep. 450, 1 (2007).

    Article  ADS  Google Scholar 

  13. Steven C. Pieper, R.B. Wiringa, V.R. Pandharipande, Phys. Rev. C 46, 1741 (1992).

    Article  ADS  Google Scholar 

  14. B.A. Brown, W.A. Richter, Phys. Rev. C 58, 2099 (1998).

    Article  ADS  Google Scholar 

  15. J.B. McGrory, B.H. Wildenthal, E.C. Halbert, Phys. Rev. C 2, 186 (1970).

    Article  ADS  Google Scholar 

  16. Sanjib Gupta, Edward F. Brown, Hendrik Schatz, Peter Möller, Karl-Ludwig Kratz, Astrophys. J 622, 1188 (2007).

    Article  ADS  Google Scholar 

  17. S. Gandolfi, F. Pederiva, S. Fantoni, K.E. Schmidt, Phys. Rev. C 73, 044304 (2006).

    Article  ADS  Google Scholar 

  18. F. Pederiva, A. Sarsa, K.E. Schmidt, S. Fantoni, Nucl. Phys. A 742, 255 (2004).

    Article  ADS  Google Scholar 

  19. R.B. Wiringa, Steven C. Pieper, Phys. Rev. Lett. 89, 182501 (2002).

    Article  ADS  Google Scholar 

  20. Steven C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64, 014001 (2001).

    Article  ADS  Google Scholar 

  21. S. Gandolfi, F. Pederiva, S. Fantoni, K.E. Schmidt, Phys. Rev. Lett. 99, 022507 (2007).

    Article  ADS  Google Scholar 

  22. Stefano Gandolfi, Francesco Pederiva, Stefano Fantoni, Kevin E. Schmidt, Phys. Rev. Lett. 98, 102503 (2007).

    Article  ADS  Google Scholar 

  23. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

  24. R.B. Wiringa, Argonne $v_{18}$ and $v_8'$ potential package (1994), http://www.phy.anl.gov/theory/research/ av18/av18pot.f.

  25. B.S. Pudliner, V.R. Pandharipande, J. Carlson, Steven C. Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997).

    Article  ADS  Google Scholar 

  26. A. Akmal, V.R. Pandharipande, Phys. Rev. C 56, 2261 (1997).

    Article  ADS  Google Scholar 

  27. A. Sarsa, S. Fantoni, K.E. Schmidt, F. Pederiva, Phys. Rev. C 68, 024308 (2003).

    Article  ADS  Google Scholar 

  28. S. Fantoni, A. Sarsa, K.E. Schmidt, Phys. Rev. Lett. 87, 181101 (2001).

    Article  ADS  Google Scholar 

  29. K.E. Schmidt, S. Fantoni, Phys. Lett. B 446, 99 (1999).

    Article  ADS  Google Scholar 

  30. Shiwei Zhang, Henry Krakauer, Phys. Rev. Lett. 90, 136401 (2003).

    Article  ADS  Google Scholar 

  31. Stefano Gandolfi, The auxiliary field diffusion Monte Carlo method for nuclear physics and nuclear astrophysics, arXiv:0712.1364 [nucl-th], PhD Thesis, 2007.

  32. R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988).

    Article  ADS  Google Scholar 

  33. Table of nuclides (2000), http://atom.kaeri.re.kr.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gandolfi.

Additional information

U.-G. Meißner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandolfi, S., Pederiva, F. & a Beccara, S. Quantum Monte Carlo calculation for the neutron-rich Ca isotopes. Eur. Phys. J. A 35, 207–211 (2008). https://doi.org/10.1140/epja/i2008-10536-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10536-3

PACS.

Navigation